Bio:
Email: lvliqin0917@126.com
吕立琴(1997—),女,硕士研究生,主要从事土壤动物生态学研究;lvliqin0917@126.com
土壤动物与植物根际间的关系是学者一直关注的问题。为了解库尔德宁国家级自然保护区不同植被下土壤动物群落结构特征,于2022年5月在自然保护区内云杉、草地、水柏枝、黑桦和胡颓子下设置5个样地,采用干漏斗分离法对其根际中小型土壤动物进行分离。结果表明:共获中小型土壤动物1 884只,隶属于2门5纲16目(亚目)25科;甲螨亚目和蚜总科为优势类群,占捕获总量的57.28%;不同植被中小型土壤动物个体数存在显著性差异(P < 0.05);云杉样地、黑桦样地和胡颓子样地中小型土壤动物的个体数呈表聚性。冗余分析得出,全磷、全钾和速效磷含量是影响中小型土壤动物分布的主要环境因子,与中小型土壤动物个体数正、负相关的土壤理化因子的极值均出现在云杉样地。综合考虑,云杉样地和草地样地更适合土壤动物生活,草地样地也适合生物多样性保护。
The relationship between soil animals and plant rhizosphere has been the focus of scholars. In order to understand the characteristics of soil animal community structure under different vegetation in the Kurdening National Nature Reserve, five sample plots are set up under spruce, grassland, myricaria, betula nigra and elaeagnus in the nature reserve in May 2022, and the medium and small-sized soil animals in the rhizosphere are separated by dry funnel separation method. The results show that there are 1 884 medium and small-sized soil animals, belonging to 25 families, 16 orders (suborders), 5 classes, 2 phyla. Oribatidae and Aphididae are the dominant groups, accounting for 57.28% of the total catch. There is significant difference in the individual number of small and medium-sized soil animals in different vegetation (P < 0.05). The individual numbers of small and medium-sized soil animals in spruce plots, betula nigra plots and elaeagnus plots show apparent aggregation. The redundancy analysis show that total phosphorus, total potassium and available phosphorus are the main environmental factors affecting the distribution of small and medium-sized soil animals, and the extreme values of soil physical and chemical factors that are positively and negatively correlated with the number of small and medium-sized soil animals appeared in the spruce plots. In a comprehensive consideration, spruce plots and grassland plots are more suitable for soil animal life, while grassland plots are more suitable for biodiversity protection.
WARDLE D A. Impacts of disturbance on detritus food webs in agro-ecosystems of contrasting tillage and weed management practices[J]. Advances in Ecological Research, 1995, 26: 105-185.
MAAß S, CARUSO T, RILLIG M C. Functional role of microarthropods in soil aggregation[J]. Pedobiologia, 2015, 58(2/3): 59-63.
LORANGER-MERCIRIS G, IMBERT D, BERNHARD-REVERSAT F, et al. Soil fauna abundance and diversity in a secondary semi-evergreen forest in Guadeloupe (Lesser Antilles): influence of soil type and dominant tree species[J]. Biology and Fertility of Soils, 2007, 44(2): 269-276. doi:10.1007/s00374-007-0199-5
BARDGETT R, USHER M, HOPKINS D. How plant communities influence decomposer communities[M]//WARDLE D. Biological Diversity and Function in Soils. Cambridgeshire: Cambridge University, 2005: 119-138.
HOOPER D U, BIGNELL D E, BROWN V K, et al. Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: patterns, mechanisms, and feedbacks[J]. Bioscience, 2000, 50(12): 1049-1061. doi:10.1641/0006-3568(2000)050[1049:IBAABB]2.0.CO;2
ZHANG Y K, PENG S, CHEN X L, et al. Plant diversity increases the abundance and diversity of soil fauna: a meta-analysis[J]. Geoderma, 2022, 411: 115694. doi:10.1016/j.geoderma.2022.115694
WANG S J, WANG H, LI J H, et al. Ants can exert a diverse effect on soil carbon and nitrogen pools in a Xishuangbanna tropical forest[J]. Soil Biology and Biochemistry, 2017, 113: 45-52.
ZHANG H Y, LIN Q X, HUANG T S, et al. Distribution patterns of soil fauna in different forest habitat types of north Hebei mountains, China[J]. Sustainability, 2022, 14(10): 5934.
DEVIGNE C, MOUCHON P, VANHEE B. Impact of soil compaction on soil biodiversity-does it matter in urban context?[J]. Urban Ecosystems, 2016, 19: 1163-1178.