Bio:
胡佳玉(1998—), 女, 硕士研究生, 主要从事新型肥料研发及示范、推广; jerry980817@163.com
氮肥增效剂是提高氮肥利用率、减少氮环境排放的重要手段之一。通过文献分析, 比较了硝化抑制剂、脲酶抑制剂、氨稳定剂、内生菌提取物ZNC、植物源硝化抑制剂(BNIs)等氮肥增效剂的作用和应用效果。硝化抑制剂、脲酶抑制剂、氨稳定剂在提高氮肥利用率、作物产量、农产品品质以及减少温室气体排放、氮损失等方面效果显著, ZNC和BNIs分别在增效、减排等方面具有特殊作用。提出按照减量增效、内生增效、整合增效深入推进氮肥增效剂的研究和应用, 以生物源(如ZNC和BNIs)增效剂为主导, 以物理性(如腐殖酸)增效剂为支撑, 以化学性(如对苯二酚、双氰胺等)增效剂为辅助, 积极推进增效剂向绿色、少量、高效转变。
Nitrogen fertilizer synergist is one of the most important means to improve the utilization rate of nitrogen fertilizer and reduce nitrogen environmental emission. Through literature analysis, the effects and application results of nitrogen fertilizer synergists such as nitrification inhibitors, urease inhibitors, ammonia stabilizers, endophytic fungus extract ZNC, and biological nitrification inhibitors (BNIs) are compared. Nitrification inhibitors, urease inhibitors, and ammonia stabilizers have significant effects on improving nitrogen fertilizer utilization, crop yield, product quality, and reducing greenhouse gas emissions and nitrogen losses. ZNC and BNIs have special effects on efficiency enhancement and emission reduction, respectively. It is proposed that the research and application of nitrogen fertilizer synergists should be further promoted according to the reduction, endogenous and integrated synergism. Taking the synergists from biological sources (such as ZNC and BNIs) as the key material, physical (such as humic acid) synergists as supporting material and chemical (such as hydroquinone, dicyandiamide, etc.) synergists as supplement material to actively promote the transformation of synergists to a greener product with lower dose usage and higher efficiency.
SLANGEN J, KERKHOFF P. Nitrification inhibitors in agriculture and horticulture: a literature review[J]. Fertilizer Research, 1984, 5(1): 1-76. doi:10.1007/BF01049492
TRENKEL M E. Improving fertilizer use efficiency-controlled-release and stabilized fertilizer in agriculture[M]. Paris: International Fertilizer Industry Association, 1997: 151.
MCCARTY G W. Modes of action of nitrification inhibitors[J]. Biology and Fertility of Soils, 1999, 29(1): 1-9. doi:10.1007/s003740050518
CAHALAN E, MINET E, ERNFORS M, et al. The effect of precipitation and application rate on dicyandiamide persistence and efficiency in two Irish grassland soils[J]. Soil Use and Management, 2015, 31(3): 367-374. doi:10.1111/sum.12194
MUNRO P E. Inhibition of nitrifiers by grass root extracts[J]. Journal of Applied Ecology, 1966, 3(2): 231-238. doi:10.2307/2401248
ZACHERL B, AMBERGER A. Effect of the nitrification inhibitors dicyandiamide, nitrapyrin and thiourea on Nitrosomonas europaea[J]. Fertilizer Rresearch, 1990, 22(1): 37-44. doi:10.1007/BF01054805
NUTI M P, NEGLIA R G, VERONA O. Azione del solfato di diciandiamidina sul metabolismo chemoautotrofo di Nitrosomonas europaea[J]. L′agricoltura (Italiana), 1975(4/5): 219-225.
KONG X W, DUAN Y F, SCHRAMM A, et al. 3, 4-Dimethylpyrazole phosphate (DMPP) reduces activity of ammonia oxidizers without adverse effects on non-target soil microorganisms and functions[J]. Applied Soil Ecology, 2016, 105: 67-75. doi:10.1016/j.apsoil.2016.03.018
VANNELLI T, HOOPER A B. Oxidation of nitrapyrin to 6-chloropicolinic acid by the ammonia-oxiding bacterium nitrosomonas europaea[J]. Applied and Environmental Microbiology, 1992, 58(7): 2321-2325. doi:10.1128/aem.58.7.2321-2325.1992
HYMAN M R, ARP D J. 14C2H2- and 14CO2-labeling studies of the de Novo synthesis of polypeptides by Nitrosomonas europaea during recovery from acetylene and light inactivation of ammonia monooxygenase[J]. Journal of Biological Chemistry, 1992, 267(3): 1534-1545. doi:10.1016/S0021-9258(18)45979-0
李华兴, 李长洪, 张新明, 等. 沸石对土壤养分生物有效性和土壤化学性质的影响研究[J]. 应用生态学报, 2001, 12(5): 743-745. doi:10.3321/j.issn:1001-9332.2001.05.022
卢丽萍, 张丽华, 高贤彪, 等. 沸石对碳铵肥效的影响[J]. 植物营养与肥料学报, 1998, 4(3): 314-318. doi:10.3321/j.issn:1008-505X.1998.03.018
QUAGGIOTTI S, RUPERTI B, PIZZEGHELLO D, et al. Effect of low molecular size humic substances on nitrate uptake and expression of genes involved in nitrate transport in maize (Zea mays L. )[J]. Journal of Experimental Botany, 2004, 55(398): 803-813. doi:10.1093/jxb/erh085
TOMASI N, MONTE R, RIZZARDO C, et al. Effects of water-extratable humic substances on molecular physiology of nitrate uptake in two maize inbred lines with different nitrogen use efficiency[C/OL]//University of California. The proceedings of the international plant nutrition colloquium XVI. California: University of California, 2009[2022-03-25]. https://escholarship.org/uc/item/3qn459bc.
PINTON R, CESCO S, IACOLETTIG G, et al. Modulation of NO3- uptake by water-extractable humic substances: involvement of root plasma membrane H+ATPase[J]. Plant and Soil, 1999, 215: 155-161. doi:10.1023/A:1004752531903
HUGHES R B, KATZ S A, STUBBINS S E. Inhibition of urease by metal ions[J]. Enzymologia, 1969, 36(6): 332-334.
DONG L H, CÓRDOVA-KREYLOS A L, YANG J S, et al. Humic acids buffer the effects of urea on soil ammonia oxidizers and potential nitrification[J]. Soil Biology and Biochemistry, 2009, 41(8): 1612-1621. doi:10.1016/j.soilbio.2009.04.023
DONG L H, YANG J S, YUAN H L, et al. Chemical characteristics and influences of two fractions of Chinese lignite humic acids on urease[J]. European Journal of Soil Biology, 2008, 44(2): 166-171. doi:10.1016/j.ejsobi.2007.07.002
BORGHETTI C, GIOACCHINI P, MARZADORI C, et al. Activity and stability of urease-hydroxyapatite and urease-hydroxyapatite-humic acid complexes[J]. Biology and Fertility of Soils, 2003, 38(2): 96-101. doi:10.1007/s00374-003-0628-z
YASEEN M, ARSHAD M, KHALID A. Effect of acetylene and ethylene gases released from encapsulated calcium carbide on growth and yield of wheat and cotton[J]. Pedobiologia, 2006, 50(5): 405-411. doi:10.1016/j.pedobi.2006.08.002
RAZA S, JIANG Y, ELRYS A S, et al. Dicyandiamide efficacy of inhibiting nitrification and carbon dioxide emission from calcareous soil depends on temperature and moisture contents[J]. Archives of Agronomy and Soil Science, 2022, 68(10): 1413-1429. doi:10.1080/03650340.2021.1895432
MARTINS M R, SANT′ANNA S A C, ZAMAN M, et al. Strategies for the use of urease and nitrification inhibitors with urea: impact on N2O and NH3 emissions, fertilizer-15N recovery and maize yield in a tropical soil[J]. Agriculture Ecosystems and Environment, 2017, 247: 54-62. doi:10.1016/j.agee.2017.06.021
LIU T, LIANG Y, CHU G. Nitrapyrin addition mitigates nitrous oxide emissions and raises nitrogen use efficiency in plastic-film-mulched drip-fertigated cotton field[J]. Plos One, 2017, 12(5): e0176305. doi:10.1371/journal.pone.0176305
BORZOUEI A, MANDER U, TEEMUSK A, et al. Effects of the nitrification inhibitor nitrapyrin and tillage practices on yield-scaled nitrous oxide emission from a maize field in Iran[J]. Pedosphere, 2021, 31(2): 314-322. doi:10.1016/S1002-0160(20)60067-4
DAWAR K, SARDAR K, ZAMAN M, et al. Effects of the nitrification inhibitor nitrapyrin and the plant growth regulator gibberellic acid on yield-scale nitrous oxide emission in maize fields under hot climatic conditions[J]. Pedosphere, 2021, 31(2): 323-331. doi:10.1016/S1002-0160(20)60076-5
余光辉, 张杨珠, 万大娟. 几种硝化抑制剂对土壤和小白菜硝酸盐含量及产量的影响[J]. 应用生态学报, 2006, 17(2): 247-250. doi:10.3321/j.issn:1001-9332.2006.02.017
DI H J, CAMERON K C. Reducing environmental impacts of agriculture by using a fine particle suspension nitrification inhibitor to decrease nitrate leaching from grazed pastures[J]. Agriculture Ecosystems and Environment, 2005, 109(3): 202-212.
HUÉRFANO X, FUERTES-MENDIZÁBAL T, DUÑABEITIA M K, et al. Splitting the application of 3, 4-dimethylpyrazole phosphate (DMPP): influence on greenhouse gases emissions and wheat yield and quality under humid Mediterranean conditions[J]. European Journal of Agronomy, 2015, 64: 47-57. doi:10.1016/j.eja.2014.11.008
IRIGOYEN I, LAMSFUS C, APARICIO-TEJO P, et al. The influence of 3, 4-dimethylpyrazole phosphate and dicyandiamide on reducing nitrate accumulation in spinach under Mediterranean conditions[J]. Journal of Agricultural Science, 2006, 144(6): 555-562.
WANG F, XU X X, JIA Z H, et al. Nitrification inhibitor 3, 4-dimethylpyrazole phosphate application during the later stage of apple fruit expansion regulates soil mineral nitrogen and tree carbon-nitrogen nutrition, and improves fruit quality[J/OL]. Plant Sci, 2020[2022-02-25]. https://www.frontiersin.org/articles/10.3389/fpls.2020.00764/full .
DI H J, CAMERON K C, SHERLOCK R R. Comparison of the effectiveness of a nitrification inhibitor, dicyandiamide, in reducing nitrous oxide emissions in four different soils under different climatic and management conditions[J]. Soil Use and Management, 2010, 23: 1-9.
MA Y C, SUN L Y, ZHANG X X, et al. Mitigation of nitrous oxide emissions from paddy soil under conventional and no-till practices using nitrification inhibitors during the winter wheat-growing season[J]. Biology and Fertility of Soils, 2013, 49: 627-635.
CHEN D L, SUTER H C, ISLAM A, et al. Influence of nitrification inhibitors on nitrification and nitrous oxide (N2O) emission from a clay loam soil fertilized with urea[J]. Soil Biology and Biochemistry, 2010, 42(4): 660-664.
VALLEJO A, SKIBA U M, GARCÍA-TORRES L, et al. Nitrogen oxides emission from soils bearing a potato crop as influenced by fertilization with treated pig slurries and composts[J]. Soil Biology and Biochemistry, 2006, 38(9): 2782-2793.
DONG D, YANG W C, SUN H, et al. Nitrous oxide emissions in response to long-term application of the nitrification inhibitor DMPP in an acidic luvisol[J]. Applied Soil Ecology, 2021, 159: 103861.
MENÉNDEZ S, MERINO P, PINTO M, et al. 3, 4-Dimethylpyrazol phosphate effect on nitrous oxide, nitric oxide, ammonia, and carbon dioxide emissions from grasslands[J]. Journal of Environmental Quality, 2006, 35(4): 973-981.
YANG G Y, JI H T, SHENG J, et al. Combining Azolla and urease inhibitor to reduce ammonia volatilization and increase nitrogen use efficiency and grain yield of rice[J]. Science of the Total Environment, 2020, 743: 140799.
ZHAO Z C, WU D, BOL R, et al. Nitrification inhibitor′s effect on mitigating N2O emissions was weakened by urease inhibitor in calcareous soils[J]. Atmospheric Environment, 2017, 166: 142-150.
PARK S, LEE B, KIM T. Urease and nitrification inhibitors with pig slurry effects on ammonia and nitrous oxide emissions, nitrate leaching, and nitrogen use efficiency in perennial ryegrass sward[J]. Animal Bioscience, 2021, 34(12): 2023-2033.
SOARES J R, CANTARELLA H, MENEGALE M. Ammonia volatilization losses from surface-applied urea with urease and nitrification inhibitors[J]. Soil Biology and Biochemistry, 2012, 52: 82-89.
DAWAR K, FAHAD S, JAHANGIR M M R, et al. Biochar and urease inhibitor mitigate NH3 and N2O emissions and improve wheat yield in a urea fertilized alkaline soil[J]. Scientific Reports, 2021, 11: 17413.
XU X K, BOECKX P, CLEEMPUT O V, et al. Urease and nitrification inhibitors to reduce emissions of CH4 and N2O in rice production[J]. Nutrient Cycling in Agroecosystems, 2002, 64(1/2): 203-211.
OZBAHCE A, TARI A F, GÖNÜLAL E, et al. The effect of zeolite applications on yield components and nutrient uptake of common bean under water stress[J]. Archives of Agronomy and Soil Science, 2015, 61(5): 615-626.
CHEN T T, XIA G M, WU Q, et al. The influence of zeolite amendment on yield performance, quality characteristics, and nitrogen use efficiency of paddy rice[J]. Crop Science, 2017, 57(5): 2777-2787.
VILLARREAL-NÚÑEZ J E, BARAHONA-AMORES L A, CASTILLO-ORTIZ O A. Effect of zeolite on the nitrogen fertilizer efficiency in ricecrop[J]. Agronomía Mesoamericana, 2015, 26(2): 315-321.
MANIKANDAN A, SUBRAMANIAN K S. Evaluation of zeolite based nitrogen nano-fertilizers on maize growth, yield and quality on inceptisols and alfisols[J]. International Journal of Plant and Soil Science, 2015, 9(4): 1-9.
AGHAALIKHANI M, GHOLAMHOSEINI M, DOLATABADIAN A, et al. Zeolite influences on nitrate leaching, nitrogen-use efficiency, yield and yield components of canola in sandy soil[J]. Archives of Agronomy and Soil Science, 2012, 58(1): 1149-1169.
GHOLAMHOSEINI M, GHALAVAND A, KHODAEI-JOGHAN A, et al. Zeolite-amended cattle manure effects on sunflower yield, seed quality, water use efficiency and nutrient leaching[J]. Soil and Tillage Research, 2013, 126: 193-202.
MALEKIAN R, ABEDI-KOUPAI J, ESLAMIAN S S, et al. Influences of clinoptilolite and surfactant-modified clinoptilolite zeolite on nitrate leaching and plant growth[J]. Journal of Hazardous Materials, 2011, 185(2/3): 970-976.
AHMED O H, YAP C H, MUHAMAD A M. Minimizing ammonia loss from urea through mixing with zeolite and acid sulphate soil[J]. International Journal of Physical Sciences, 2010, 5(14): 2198-2202.
PERUMAL P, AHMED O H, KASIM S, et al. Mitigating ammonia volatilization from urea in waterlogged condition using clinoptilolite zeolite[J]. International Journal of Agriculture and Biology, 2015, 17(1): 149-155.
REEZA A A, AHMED O H, MAJID N M N A, et al. Reducing ammonia loss from urea by mixing with humic and fulvic acids isolated from coal[J]. American Journal of Environmental Sciences, 2009, 5(3): 420-426.
PANG L Y, SONG F P, SONG X L, et al. Effects of different types of humic acid isolated from coal on soil NH3 volatilization and CO2 emissions[J]. Environmental Research, 2021, 194: 110711.
LU C C, LIU H F, JIANG D P, et al. Paecilomyces variotii extracts (ZNC) enhance plant immunity and promote plant growth[J]. Plant and Soil, 2019, 441: 383-397.
PENG C E, ZHANG A L, WANG Q B, et al. Ultrahigh-activity immune inducer from endophytic fungi induces tobacco resistance to virus by SA pathway and RNA silencing [J]. BMC Plant Biology, 2020, 20: 169. doi:10.1186/s12870-020-02386-4
王晓琪, 姚媛媛, 陈宝成, 等. 宛氏拟青霉提取物增强水稻抗低温胁迫的最佳施用水平[J]. 植物营养与肥料学报, 2019, 25(12): 2133-2141. doi:10.11674/zwyf.18497
张晓英, 王庆彬, 丁新华, 等. 不同浓度ZNC免疫诱抗剂对4种作物种子芽长和根长的影响[J]. 现代农业科技, 2020(20): 6-8. doi:10.3969/j.issn.1007-5739.2020.20.002
SUBBARAO G V, NAKAHARA K, HURTADO M P, et al. Evidence for biological nitrification inhibition in Brachiaria pastures[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(41): 17302-17307. doi:10.1073/pnas.0903694106
SUBBARAO G V, NAKAHARA K, ISHIKAWA T, et al. Biological nitrification inhibition (BNI) activity in sorghum and its characterization[J]. Plant and Soil, 2013, 366: 243-259. doi:10.1007/s11104-012-1419-9
TANAKA J P, NARDI P, WISSUWA M. Nitrification inhibition activity, a novel trait in root exudates of rice[J]. Aob Plants, 2010: plq014.
SIVASAKTHY K, GNANAVELRAJAH N. Effect of neem (Azadirachta indica) leaf on nitrification and selected properties of soil amended with different sources of nitrogen[J]. Journal of Science and Management, 2010, 2: 26-32.
CASTALDI S, CARFORA A, FIORENTINO A, et al. Inhibition of net nitrification activity in Mediterranean woodland: possible role of chemicals produced by Arbutus unedo[J]. Plant and Soil, 2009, 315: 273-283. doi:10.1007/s11104-008-9750-x
SUN L, LU Y F, YU F W, et al. Biological nitrification inhibition by rice root exudates and its relationship with nitrogen-use efficiency[J]. New Phytologist, 2016, 212(3): 646-656. doi:10.1111/nph.14057
SUBBARAO G V, NAKAHARA K, ISHIKAWA T, et al. Free fatty acids from the pasture grass Brachiaria humidicola and one of their methyl esters as inhibitors of nitrification[J]. Plant and Soil, 2008, 313: 89-99. doi:10.1007/s11104-008-9682-5
MAJUMDAR D. Suppression of nitrification and N2O emission by karanjin - a nitrification inhibitor prepared from karanja (Pongamia glabra Vent. )[J]. Chemosphere, 2002, 47(8): 845-850. doi:10.1016/S0045-6535(01)00287-9
JANKE C K, WENDLING L A, FUJINUMA R. Biological nitrification inhibition by root exudates of native species, Hibiscus splendens and Solanum echinatum[J]. Peerj, 2018, 6(1): e4960.
ZHANG M, FAN C H, LI Q L, et al. A 2-yr field assessment of the effects of chemical and biological nitrification inhibitors on nitrous oxide emissions and nitrogen use efficiency in an intensively managed vegetable cropping system[J]. Agriculture, Ecosystems and Environment, 2015, 201: 43-50. doi:10.1016/j.agee.2014.12.003
KARWAT H, MORETA D, ARANGO J, et al. Residual effect of BNI by Brachiaria humidicola pasture on nitrogen recovery and grain yield of subsequent maize[J]. Plant and Soil, 2017, 420: 389-406. doi:10.1007/s11104-017-3381-z
DATTA A, ADHYA T K. Effects of organic nitrification inhibitors on methane and nitrous oxide emission from tropical rice paddy[J]. Atmospheric Environment, 2014, 92: 533-545. doi:10.1016/j.atmosenv.2014.04.009
MAJUMDAR D. Suppression of nitrification and N2O emission by karanjin-a nitrification inhibitor prepared from karanja (Pongamia glabra Vent. )[J]. Chemosphere, 2002, 47: 845-850. doi:10.1016/S0045-6535(01)00287-9
LU Y F, ZHANG X N, JIANG J F, et al. Effects of the biological nitrification inhibitor 1, 9-decanediol on nitrification and ammonia oxidizers in three agricultural soils[J]. Soil Biology and Biochemistry, 2019, 129: 48-59. doi:10.1016/j.soilbio.2018.11.008
MAFTOUN M, SHEIBANY B. Comparative phytotoxicity of several nitrification inhibitors to soybean plants[J]. Journal of Agricultural and Food Chemistry, 1979, 27(6): 1365-1368. doi:10.1021/jf60226a013
蒲玮, 吴雅薇, 张頔, 等. 减氮配施氮肥增效剂对土壤速效氮和玉米产量的影响[J]. 水土保持学报, 2021, 35(3): 276-283. doi:10.13870/j.cnki.stbcxb.2021.03.038
BOECKX P, XU X, CLEEMPUT O. Mitigation of N2O and CH4 emission from rice and wheat cropping systems using dicyandiamide and hydroquinone[J]. Nutrient Cycling in Agroecosystems, 2005, 72(1): 41-49. doi:10.1007/s10705-004-7352-4