Bio:
Email: 972776978@qq.com
黄俊(1970—),男,农艺师,从事植物营养与肥料技术推广研究工作;972776978@qq.com
铁是人体必需的微量元素之一,缺铁性贫血是世界上最常见的营养缺乏症,药物防治、食品防御及饮食多样化等措施在发达国家已广泛推广;在发展中国家,主要膳食结构以铁含量较低且人体利用效率较低的谷类为主,人群铁摄入量往往不足。在全球实施农业生产的生物强化工程,通过遗传育种、肥料施用等农艺措施提升谷类作物籽粒中铁的含量,可改善人体的铁营养水平。综述了全球铁与人类健康、人体铁营养摄入、作物遗传育种与铁生物强化、铁肥施用与作物铁强化等方面的研究成果。建议在“医学-营养学-农学”之间建立起跨学科体系,合作研究肥料-土壤-作物-人体系统中铁的运转与利用效率,综合解决人类铁营养健康问题。
Iron is one of the essential trace elements in human body and iron deficiency anemia is the most common nutritional deficiency in the world. Measures such as drug prevention and control, food defense and diet diversification have been widely promoted in developed countries. While in developing countries, the main dietary structure is dominated by cereals with low iron content and low utilization efficiency by human body, and the population iron intake is often insufficient. The global implementation of bio-fortification projects in agricultural production to enhance the iron content in cereal seeds through genetic breeding, fertilizer application and other agronomic measures can improve the iron nutrition level in human body. The research results on global iron and human health, human iron nutrition intake, crop genetic breeding and iron bio-fortification, and iron fertilizer application and crop iron fortification are reviewed. An interdisciplinary system between "medicine, nutrition and agronomy" and cooperate to study the operation and utilization efficiency of iron in fertilizer-soil-crop-human system is suggested to establish, and solve human iron nutrition health problem comprehensively.
United Nations. Transforming our world: the 2030 agenda for sustainable development[EB/OL]. [2023-02-20]. https://sdgs.un.org/2030agenda.
联合国粮食及农业组织, 国际农业发展基金, 联合国儿童基金会, 等. 2022年世界粮食安全和营养状况: 调整粮食和农业政策, 提升健康膳食可负担性-概要[M/OL]. 罗马: 联合国粮食及农业组织, 2022[2023-02-20]. https//doi.org/10.4060/cc0640zh.
MARSCHNER H, MARSCHNER P. Marschner's mineral nutrition of higher plants[M]. San Diego: Elsevier/Academic, 2012.
STEIN A J. Rethinking the measurement of undernutrition in a broader health context: should we look at possible causes or actual effects?[J]. Global Food Security, 2014, 3(3/4): 193-199.
LOWE N M. The global challenge of hidden hunger: perspectives from the field[J]. Proceedings of the Nutrition Society, 2021, 80(3): 283-289. doi:10.1017/S0029665121000902
BALK J, CONNORTON J M, WAN Y, et al. Improving wheat as a source of iron and zinc for global nutrition[J]. Nutrition Bulletin, 2019, 449(1): 53-59.
BOUIS H E. Plant breeding: a new tool for fighting micronutrient malnutrition[J]. The Journal of Nutrition, 2002, 132(3): 491S-494S. doi:10.1093/jn/132.3.491S
International Food Policy Research Institute. Global nutrition report 2016: from promise to impact: ending malnutrition by 2030[M]. Washington D C: International Food Policy Research Institute, 2016.
ZIMMERMANN M B, HURRELL R F. Nutritional iron deficiency[J]. The Lancet, 2007, 370(9586): 511-520. doi:10.1016/S0140-6736(07)61235-5
ANDERSON G J, FRAZER D M. Current understanding of iron homeostasis[J]. American Journal of Clinical Nutrition, 2017, 106(6): 1559S-1566S.
World Health Organization. WHO guideline on use of ferritin concentrations to assess iron status in individuals and populations[M]. Geneva: World Health Organization, 2020.
KASSEBAUM N J, JASRASARIA R, NAGHAVI M, et al. A systematic analysis of global anemia burden from 1990 to 2010[J]. Blood, 2014, 123(5): 615-624. doi:10.1182/blood-2013-06-508325
JANGIR C K, KUMAR S, LAKHRAN H, et al. Towards mitigating malnutrition in pulses through biofortification[J]. Trends in Biosciences, 2017, 10(17): 2999-3002.
VOS T, LIM S S, ABBAFATI C, et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990—2019: a systematic analysis for the global burden of disease study 2019[J]. The Lancet, 2020, 396(10258): 1204-1222. doi:10.1016/S0140-6736(20)30925-9
POMPANO L. Linking iron-biofortified beans and physical performance[EB/OL]. (2020-03-03)[2023-02-20]. https://www.ifpri.org/blog/linking-iron-biofortified-beans-and-physical-performance.
刘建欣, 刘桂玲, 李燕燕, 等. 中国2000—2020年0~14岁儿童缺铁性贫血患病率的Meta分析[J]. 中国学校卫生, 2020, 41(12): 1876-1881. doi:10.16835/j.cnki.1000-9817.2020.12.028
World Health Organization. Guideline: intermittent iron and folic acid supplementation in menstruating women[M]. Geneva: World Health Organization, 2011.
TRUMBO P, YATES A A, SCHLICKER S, et al. Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc[J]. Journal of the American Dietetic Association, 2001, 101(3): 294-301. doi:10.1016/S0002-8223(01)00078-5
PACHÓN H, SPOHRER R, MEI Z, et al. Evidence of the effectiveness of flour fortification programs on iron status and anemia: a systematic review[J]. Nutrition Reviews, 2015, 73(11): 780-795. doi:10.1093/nutrit/nuv037
GREGORY P J, WAHBI A, ADU-GYAMFI J, et al. Approaches to reduce zinc and iron deficits in food systems[J]. Global Food Security, 2017, 15: 1-10. doi:10.1016/j.gfs.2017.03.003
KUMAR S, ANUKIRUTHIKA T, DUTTA S, et al. Iron deficiency anemia: a comprehensive review on iron absorption, bioavailability and emerging food fortification approaches[J]. Trends in Food Science & Technology, 2020, 99: 58-75.
MAN Y, XU T, ADHIKARI B, et al. Iron supplementation and iron-fortified foods: a review[J]. Critical Reviews in Food Science and Nutrition, 2022, 62(16): 4504-4525. doi:10.1080/10408398.2021.1876623
US Department of Health and Human Services, US Department of Agriculture. Dietary guidelines for Americans 2015—2020 (8th Edition)[R/OL]. (2021-08-24)[2023-02-20]. https://health.gov/our-work/food-nutrition/previous-dietary-guidelines/2015.
HURRELL R, EGLI I. Iron bioavailability and dietary reference values[J]. The American Journal of Clinical Nutrition, 2010, 91(5): 1461S-1467S. doi:10.3945/ajcn.2010.28674F
US Department of Agriculture. What we eat in America, NHANES 2009—2010[EB/OL]. [2023-02-20]. https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/0910/tables_1-40_2009-2010.pdf.
MANOGUERRA A S, ERDMAN A R, BOOZE L L, et al. Iron ingestion: an evidence-based consensus guideline for out-of-hospital management[J]. Clinical Toxicology, 2005, 43(6): 553-570. doi:10.1081/CLT-200068842
WHITTAKER P, TUFARO P R, RADER J I. Iron and folate in fortified cereals[J]. Journal of the American College of Nutrition, 2001, 20(3): 247-254. doi:10.1080/07315724.2001.10719039
WELCH R M. Breeding strategies for biofortified staple plant foods to reduce micronutrient malnutrition globally[J]. The Journal of Nutrition, 2002, 132(3): 495S-499S. doi:10.1093/jn/132.3.495S
BOUIS H E, HOTZ C, MCCLAFFERTY B, et al. Biofortification: a new tool to reduce micronutrient malnutrition[J]. Food and Nutrition Bulletin, 2011, 32(Supplement 1): S31-S40.
BOUIS H E, SALTZMAN A. Improving nutrition through biofortification: a review of evidence from HarvestPlus, 2003 through 2016[J]. Global Food Security, 2017, 12: 49-58. doi:10.1016/j.gfs.2017.01.009
SALTZMAN A, BIROL E, BOUIS H E, et al. Biofortification: progress toward a more nourishing future[J]. Global Food Security, 2013, 2(1): 9-17. doi:10.1016/j.gfs.2012.12.003
LUDWIG Y, SLAMET-LOEDIN I H. Genetic biofortification to enrich rice and wheat grain iron: from genes to product[J]. Frontiers in Plant Science, 2019, 10: 833. doi:10.3389/fpls.2019.00833
BEASLEY J T, BONNEAU J P, SÁNCHEZ-PALACIOS J T, et al. Metabolic engineering of bread wheat improves grain iron concentration and bioavailability[J]. Plant Biotechnology Journal, 2019, 17(8): 1514-1526. doi:10.1111/pbi.13074
SHI Y, LI J, SUN Z. Success to iron biofortification of wheat grain by combining both plant and microbial genetics[J]. Rhizosphere, 2020, 15: 100218. doi:10.1016/j.rhisph.2020.100218
ANDERSSON M S, SALTZMAN A, VIRK P S, et al. Progress update: crop development of biofortified staple food crops under HarvestPlus[J]. African Journal of Food, Agriculture, Nutrition and Development, 2017, 17(2): 11905-11935. doi:10.18697/ajfand.78.HarvestPlus05
HarvestPlus. The crops: iron lentil[EB/OL]. [2023-02-20]. https://www.harvestplus.org/crop/iron-zinc-lentil/.
HarvestPlus. The crops: iron pearl millet[EB/OL]. [2023-02-20]. https://www.harvestplus.org/crop/iron-pearl-millet/.
HarvestPlus. The crops: high iron beans[EB/OL]. [2023-02-20]. https://www.harvestplus.org/wp-content/uploads/2022/01/Iron-Beans.pdf.
BEEBE S. Biofortification of common bean for higher iron concentration[J]. Frontiers in Sustainable Food Systems, 2020, 4: 573449. doi:10.3389/fsufs.2020.573449
HAAS J D, LUNA S V, LUNG'AHO M G, et al. Consuming iron biofortified beans increases iron status in Rwandan women after 128 days in a randomized controlled feeding trial[J]. The Journal of Nutrition, 2016, 146(8): 1586-1592. doi:10.3945/jn.115.224741
MURRAY-KOLB L E, WENGER M J, SCOTT S P, et al. Consumption of iron-biofortified beans positively affects cognitive performance in 18- to 27-year-old Rwandan female college students in an 18-week randomized controlled efficacy trial[J]. The Journal of Nutrition, 2017, 147(11): 2109-2117. doi:10.3945/jn.117.255356
WENGER M J, RHOTEN S E, MURRAY-KOLB L E, et al. Changes in iron status are related to changes in brain activity and behavior in Rwandan female university students: results from a randomized controlled efficacy trial involving iron-biofortified beans[J]. The Journal of Nutrition, 2019, 149(4): 687-697. doi:10.1093/jn/nxy265
LUNA S V, POMPANO L M, LUNG'AHO M, et al. Increased iron status during a feeding trial of iron-biofortified beans increases physical work efficiency in Rwandan women[J]. The Journal of Nutrition, 2020, 150(5): 1093-1099. doi:10.1093/jn/nxaa016
RICROCH A E, HÉNARD-DAMAVE M-C. Next biotech plants: new traits, crops, developers and technologies for addressing global challenges[J]. Critical Reviews in Biotechnology, 2016, 36(4): 675-690. doi:10.3109/07388551.2015.1004521
SWAMY B M, MARATHI B, RIBEIRO-BARROS A I, et al. Iron biofortification in rice: an update on quantitative trait loci and candidate genes[J]. Frontiers in Plant Science, 2021, 12: 647341. doi:10.3389/fpls.2021.647341
JOHNSON A A T, KYRIACOU B, CALLAHAN D L, et al. Constitutive overexpression of the OsNAS gene family reveals single-gene strategies for effective iron- and zinc-biofortification of rice endosperm[J]. Plos One, 2011, 6(9): e24476. doi:10.1371/journal.pone.0024476
TRIJATMIKO K R, DUEÑAS C, TSAKIRPALOGLOU N, et al. Biofortified indica rice attains iron and zinc nutrition dietary targets in the field[J]. Scientific Reports, 2016, 6: 19792. doi:10.1038/srep19792
MASUDA H, ISHIMARU Y, AUNG M S, et al. Iron biofortification in rice by the introduction of multiple genes involved in iron nutrition[J]. Scientific Reports, 2012, 2: 543. doi:10.1038/srep00543
STANGOULIS J C, KNEZ M. Biofortification of major crop plants with iron and zinc-achievements and future directions[J]. Plant and Soil, 2022, 474: 57-76. doi:10.1007/s11104-022-05330-7
BANERJEE S, ROY P, NANDI S, et al. Advanced biotechnological strategies towards the development of crops with enhanced micronutrient content[J]. Plant Growth Regulation, 2023, DOI: 10.1007/s10725-023-00968-4. doi:10.1007/s10725-023-00968-4
CAKMAK I, KUTMAN U B. Agronomic biofortification of cereals with zinc: a review[J]. European Journal of Soil Science, 2018, 69(1): 172-180. doi:10.1111/ejss.12437
GUERINOT M L, YI Y. Iron: nutritious, noxious, and not readily available[J]. Plant Physiology, 1994, 104(3): 815-820. doi:10.1104/pp.104.3.815
吴慧兰, 王宁, 凌宏清. 植物铁吸收、转运和调控的分子机制研究进展[J]. 植物学通报, 2007, 24(6): 779-788. doi:10.3969/j.issn.1674-3466.2007.06.008
BRUMBAROVA T, BAUER P, IVANOV R. Molecular mechanisms governing Arabidopsis iron uptake[J]. Trends in Plant Scienc, 2015, 20(2): 124-133. doi:10.1016/j.tplants.2014.11.004
ROBINSON N J, PROCTER C M, CONNOLLY E L, et al. A ferric-chelate reductase for iron uptake from soils[J]. Nature, 1999, 397: 694-697. doi:10.1038/17800
LI L, CHENG X, LING H-Q. Isolation and characterization of Fe(Ⅲ)-chelate reductase gene LeFRO1 in tomato[J]. Plant Molecular Biology, 2004, 54: 125-136. doi:10.1023/B:PLAN.0000028774.82782.16
WATERS B M, LUCENA C, ROMERA F J, et al. Ethylene involvement in the regulation of the H+-ATPase CsHA1 gene and of the new isolated ferric reductase CsFRO1 and iron transporter CsIRT1 genes in cucumber plants[J]. Plant Physiology and Biochemistry, 2007, 45(5): 293-301. doi:10.1016/j.plaphy.2007.03.011
DING H, DUAN L, WU H, et al. Regulation of AhFRO1, an Fe(Ⅲ)-chelate reductase of peanut, during iron deficiency stress and intercropping with maize[J]. Physiologia Plantarum, 2009, 136(3): 274-283. doi:10.1111/j.1399-3054.2009.01219.x
EIDE D, BRODERIUS M, FETT J, et al. A novel iron-regulated metal transporter from plants identified by functional expression in yeast[J]. Proceedings of the National Academy of Sciences, 1996, 93(11): 5624-5628. doi:10.1073/pnas.93.11.5624
KOBAYASHI T, NISHIZAWA N K. Iron sensors and signals in response to iron deficiency[J]. Plant Science, 2014, 224: 36-43. doi:10.1016/j.plantsci.2014.04.002
THOMINE S, WANG R, WARD J M, et al. Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes[J]. Proceedings of the National Academy of Sciences, 2000, 97(9): 4991-4996. doi:10.1073/pnas.97.9.4991
KOBAYASHI T, NOZOYE T, NISHIZAWA N K. Iron transport and its regulation in plants[J]. Free Radical Biology and Medicine, 2019, 133: 11-20. doi:10.1016/j.freeradbiomed.2018.10.439
NOZOYE T, NAGASAKA S, KOBAYASHI T, et al. Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants[J]. Journal of Biological Chemistry, 2011, 286(7): 5446-5454. doi:10.1074/jbc.M110.180026
李俊成, 于慧, 杨素欣, 等. 植物对铁元素吸收的分子调控机制研究进展[J]. 植物生理学报, 2016, 52(6): 835-842. doi:10.13592/j.cnki.ppj.2016.0202
RIAZ N, GUERINOT M L. All together now: regulation of the iron deficiency response[J]. Journal of Experimental Botany, 2021, 72(6): 2045-2055. doi:10.1093/jxb/erab003
VÉLEZ-BERMÚDEZ I C, SCHMIDT W. How plants recalibrate cellular iron homeostasis[J]. Plant and Cell Physiology, 2022, 63(2): 154-162. doi:10.1093/pcp/pcab166
LIANG G. Iron uptake, signaling, and sensing in plants[J]. Plant Communications, 2022, 3(5): 100349. doi:10.1016/j.xplc.2022.100349
TABATA R, KAMIYA T, IMOTO S, et al. Systemic regulation of iron acquisition by Arabidopsis in environments with heterogeneous iron distributions[J]. Plant and Cell Physiology, 2022, 63(6): 842-854. doi:10.1093/pcp/pcac049
KOBAYASHI T, OGO Y, ITAI R N, et al. The transcription factor IDEF1 regulates the response to and tolerance of iron deficiency in plants[J]. Proceedings of the National Academy of Sciences, 2007, 104(48): 19150-19155. doi:10.1073/pnas.0707010104
HARBORT C J, HASHIMOTO M, INOUE H, et al. Root-secreted coumarins and the microbiota interact to improve iron nutrition in Arabidopsis[J]. Cell Host & Microbe, 2020, 28(6): 825-837.
MURGIA I, MARZORATI F, VIGANI G, et al. Plant iron nutrition: the long road from soil to seeds[J]. Journal of Experimental Botany, 2022, 73(6): 1809-1824. doi:10.1093/jxb/erab531
JAIN A, WILSON G T, CONNOLLY E L. The diverse roles of FRO family metalloreductases in iron and copper homeostasis[J]. Frontiers in Plant Science, 2014, 5: 100.
KIM S A, PUNSHON T, LANZIROTTI A, et al. Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1[J]. Science, 2006, 314(5803): 1295-1298. doi:10.1126/science.1132563
BRIAT J-F, DUC C, RAVET K, et al. Ferritins and iron storage in plants[J]. Biochimica et Biophysica Acta (BBA) - General Subjects, 2010, 1800(8): 806-814. doi:10.1016/j.bbagen.2009.12.003
TARANTINO D, PETIT J-M, LOBREAUX S, et al. Differential involvement of the IDRS cis-element in the developmental and environmental regulation of the AtFer1 ferritin gene from Arabidopsis[J]. Planta, 2003, 217: 709-716. doi:10.1007/s00425-003-1038-z
TARANTINO D, SANTO N, MORANDINI P, et al. AtFer4 ferritin is a determinant of iron homeostasis in Arabidopsis thaliana heterotrophic cells[J]. Journal of Plant Physiology, 2010, 167(18): 1598-1605. doi:10.1016/j.jplph.2010.06.020
VON WIREN N, KLAIR S, BANSAL S, et al. Nicotianamine chelates both FeⅢ and FeⅡ. Implications for metal transport in plants[J]. Plant Physiology, 1999, 119(3): 1107-1114. doi:10.1104/pp.119.3.1107
BASHIR K, RASHEED S, KOBAYASHI T, et al. Regulating subcellular metal homeostasis: the key to crop improvement[J]. Frontiers in Plant Science, 2016, 7: 1192.
MARI S, BAILLY C, THOMINE S. Handing off iron to the next generation: how does it get into seeds and what for?[J]. Biochemical Journal, 2020, 477(1): 259-274. doi:10.1042/BCJ20190188
RELLÁN-ÁLVAREZ R, ABADÍA J, ÁLVAREZ-FERNÁNDEZ A. Formation of metal-nicotianamine complexes as affected by pH, ligand exchange with citrate and metal exchange. A study by electrospray ionization time-of-flight mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2008, 22(10): 1553-1562. doi:10.1002/rcm.3523
MIRGORODSKAYA O A, SHEVCHENKO A A, CHERNUSHEVICH I V, et al. Electrospray-ionization time-of-flight mass spectrometry in protein chemistry[J]. Analytical Chemistry, 1994, 66(1): 99-107. doi:10.1021/ac00073a018
RELLÁN-ÁLVAREZ R, GINER-MARTÍNEZ-SIERRA J, ORDUNA J, et al. Identification of a tri-iron(Ⅲ), tri-citrate complex in the xylem sap of iron-deficient tomato resupplied with iron: new insights into plant iron long-distance transport[J]. Plant and Cell Physiology, 2010, 51(1): 91-102. doi:10.1093/pcp/pcp170
LÓPEZ-MILLÁN A F, MORALES F, ABADÍA A, et al. Changes induced by Fe deficiency and Fe resupply in the organic acid metabolism of sugar beet (Beta vulgaris) leaves[J]. Physiologia Plantarum, 2001, 112(1): 31-38. doi:10.1034/j.1399-3054.2001.1120105.x
YOKOSHO K, YAMAJI N, MA J F. OsFRDL1 expressed in nodes is required for distribution of iron to grains in rice[J]. Journal of Experimental Botany, 2016, 67(18): 5485-5494. doi:10.1093/jxb/erw314
MORRISSEY J, BAXTER I R, LEE J, et al. The ferroportin metal efflux proteins function in iron and cobalt homeostasis in Arabidopsis[J]. The Plant Cell, 2009, 21(10): 3326-3338. doi:10.1105/tpc.109.069401
WATERS B M, CHU H-H, DIDONATO R J, et al. Mutations in Arabidopsis Yellow Stripe-Like1 and Yellow Stripe-Like3 reveal their roles in metal ion homeostasis and loading of metal ions in seeds[J]. Plant Physiology, 2006, 141(4): 1446-1458. doi:10.1104/pp.106.082586
DIDONATO R J, ROBERTS L A, SANDERSON T, et al. Arabidopsis Yellow Stripe-Like2 (YSL2): a metal-regulated gene encoding a plasma membrane transporter of nicotianamine-metal complexes[J]. The Plant Journal, 2004, 39(3): 403-414. doi:10.1111/j.1365-313X.2004.02128.x
ISHIMARU Y, MASUDA H, BASHIR K, et al. Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese[J]. The Plant Journal, 2010, 62(3): 379-390. doi:10.1111/j.1365-313X.2010.04158.x
KAKEI Y, ISHIMARU Y, KOBAYASHI T, et al. OsYSL16 plays a role in the allocation of iron[J]. Plant Molecular Biology, 2012, 79: 583-594. doi:10.1007/s11103-012-9930-1
AOYAMA T, KOBAYASHI T, TAKAHASHI M, et al. OsYSL18 is a rice iron(Ⅲ)-deoxymugineic acid transporter specifically expressed in reproductive organs and phloem of lamina joints[J]. Plant Molecular Biology, 2009, 70: 681-692. doi:10.1007/s11103-009-9500-3
ZHAI Z, GAYOMBA S R, JUNG H-I, et al. OPT3 is a phloem-specific iron transporter that is essential for systemic iron signaling and redistribution of iron and cadmium in Arabidopsis[J]. The Plant Cell, 2014, 26(5): 2249-2264. doi:10.1105/tpc.114.123737
PALCHOUDHURY S, JUNGJOHANN K L, WEERASENA L, et al. Enhanced legume root growth with pre-soaking in α-Fe2O3 nanoparticle fertilizer[J]. RSC Advances, 2018, 8(43): 24075-24083. doi:10.1039/C8RA04680H
ÀLVAREZ-FERNÀNDEZ A, ABADÍA J, ABADÍA A. Iron deficiency, fruit yield and fruit quality[M]//BARTON L L, ABADÍA J. Iron nutrition in plants and rhizospheric microorganisms, Dordrecht: Springer, 2006: 85-101.
ZULFIQAR U, MAQSOOD M, HUSSAIN S, et al. Iron nutrition improves productivity, profitability, and biofortification of bread wheat under conventional and conservation tillage systems[J]. Journal of Soil Science and Plant Nutrition, 2020, 20: 1298-1310. doi:10.1007/s42729-020-00213-1
GAMBLE A V, HOWE J A, DELANEY D, et al. Iron chelates alleviate iron chlorosis in soybean on high pH soils[J]. Agronomy Journal, 2014, 106(4): 1251-1257. doi:10.2134/agronj13.0474
ABADÍA J, VÁZQUEZ S, RELLÁN-ÁLVAREZ R, et al. Towards a knowledge-based correction of iron chlorosis[J]. Plant Physiology and Biochemistry, 2011, 49(5): 471-482. doi:10.1016/j.plaphy.2011.01.026
SUZUKI M, URABE A, SASAKI S, et al. Development of a mugineic acid family phytosiderophore analog as an iron fertilizer[J]. Nature Communications, 2021, 12: 1558. doi:10.1038/s41467-021-21837-6
KRATENA N, GÖKLER T, MALTROVSKY L, et al. A unified approach to phytosiderophore natural products[J]. Chemistry-A European Journal, 2021, 27(2): 577-580. doi:10.1002/chem.202004004
WANG T, WANG N, LU Q, et al. The active Fe chelator proline-2'-deoxymugineic acid enhances peanut yield by improving soil Fe availability and plant Fe status[J]. Plant, Cell & Environment, 2023, 46(1): 239-250.
MALHOTRA H, PANDEY R, SHARMA S, et al. Foliar fertilization: possible routes of iron transport from leaf surface to cell organelles[J]. Archives of Agronomy and Soil Science, 2020, 66(3): 279-300. doi:10.1080/03650340.2019.1616288
FAROOQ M, WAHID A, SIDDIQUE K H M. Micronutrient application through seed treatments: a review[J]. Journal of Soil Science and Plant Nutrition, 2012, 12(1): 125-142. doi:10.4067/S0718-95162012000100011
KIRAN A, WAKEEL A, SULTANA R, et al. Concentration and localization of Fe and Zn in wheat grain as affected by its application to soil and foliage[J]. Bulletin of Environmental Contamination and Toxicology, 2021, 106(5): 852-858. doi:10.1007/s00128-021-03183-x
KABIR A H, PALTRIDGE N, STANGOULIS J. Chlorosis correction and agronomic biofortification in field peas through foliar application of iron fertilizers under Fe deficiency[J]. Journal of Plant Interactions, 2016, 11(1): 1-4. doi:10.1080/17429145.2015.1125534
FANG Y, WANG L, XIN Z, et al. Effect of foliar application of zinc, selenium, and iron fertilizers on nutrients concentration and yield of rice grain in China[J]. Journal of Agricultural and Food Chemistry, 2008, 56(6): 2079-2084. doi:10.1021/jf800150z
YUAN L, WU L, YANG C, et al. Effects of iron and zinc foliar applications on rice plants and their grain accumulation and grain nutritional quality[J]. Journal of the Science of Food and Agriculture, 2013, 93(2): 254-261. doi:10.1002/jsfa.5749
WEI Y, SHOHAG M, YING F, et al. Effect of ferrous sulfate fortification in germinated brown rice on seed iron concentration and bioavailability[J]. Food Chemistry, 2013, 138(2/3): 1952-1958.
SUNDARIA N, SINGH M, UPRETI P, et al. Seed priming with iron oxide nanoparticles triggers iron acquisition and biofortification in wheat (Triticum aestivum L.) grains[J]. Journal of Plant Growth Regulation, 2019, 38(1): 122-131. doi:10.1007/s00344-018-9818-7
ZUO Y, ZHANG F. Iron and zinc biofortification strategies in dicot plants by intercropping with gramineous species. A review[J]. Agronomy for Sustainable Development, 2009, 29(1): 63-71. doi:10.1051/agro:2008055
GUNES A, INAL A, ADAK M S, et al. Mineral nutrition of wheat, chickpea and lentil as affected by mixed cropping and soil moisture[J]. Nutrient Cycling in Agroecosystems, 2007, 78(1): 83-96. doi:10.1007/s10705-006-9075-1
KAUR A, SINGH G. Zinc and iron application in conjunction with nitrogen for agronomic biofortification of field crops - a review[J]. Crop and Pasture Science, 2022, 73(7/8): 769-780.
MEDINA-LOZANO I, DÍAZ A. Applications of genomic tools in plant breeding: crop biofortification[J]. International Journal of Molecular Sciences, 2022, 23(6): 3086. doi:10.3390/ijms23063086
SINGH U, KUMAR N, PRAHARAJ C S, et al. Ferti-fortification: an easy approach for nutritional enrichment of chickpea[J]. The Ecoscan, 2015, 9(3/4): 731-736.
YAGMUR M, ARPALI D, GULSER F. Effects of zinc and urea as foliar application on nutritional properties and grain yield in barley (Hordeum vulgare L. Conv. Distichon) under semi arid condition[J]. Fresenius Environmental Bulletin, 2017, 26(10): 6085-6092.
CHUGH G, SIDDIQUE K H M, SOLAIMAN Z M. Iron fortification of food crops through nanofertilisation[J]. Crop and Pasture Science, 2022, 73(8): 736-748. doi:10.1071/CP21436
RUI M, MA C, HAO Y, et al. Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea)[J]. Frontiers in Plant Science, 2016, 7: 815.
HU J, GUO H, LI J, et al. Interaction of γ-Fe2O3 nanoparticles with Citrus maxima leaves and the corresponding physiological effects via foliar application[J]. Journal of Nanobiotechnology, 2017, 15(1): 51. doi:10.1186/s12951-017-0286-1
CORREDOR E, TESTILLANO P S, CORONADO M-J, et al. Nanoparticle penetration and transport in living pumpkin plants: in situsubcellular identification[J]. BMC Plant Biology, 2009, 9: 45. doi:10.1186/1471-2229-9-45
PEYVANDI M, PARANDE H, MIRZA M. Comparison of nano Fe chelate with Fe chelate effect on growth parameters and antioxidant enzymes activity of Ocimum basilicum[J]. New Cellular and Molecular Biotechnology Journal, 2011, 1(4): 89-98.
FAKHARZADEH S, HAFIZI M, BAGHAEI M A, et al. Using nanochelating technology for biofortification and yield increase in rice[J]. Scientific Reports, 2020, 10: 4351. doi:10.1038/s41598-020-60189-x
SRIVASTAVA G, DAS C K, DAS A, et al. Seed treatment with iron pyrite (FeS2) nanoparticles increases the production of spinach[J]. RSC Advances, 2014, 4(102): 58495-58504. doi:10.1039/C4RA06861K
MOGHADAM A, VATTANI H, BAGHAEI N, et al. Effect of different levels of fertilizer nano-iron chelates on growth and yield characteristics of two varieties of spinach (Spinacia oleracea L.): Varamin 88 and Viroflay[J]. Research Journal of Applied Sciences, Engineering and Technology, 2012, 4(22): 4813-4818.
AL-AMRI N, TOMBULOGLU H, SLIMANI Y, et al. Size effect of iron(Ⅲ) oxide nanomaterials on the growth, and their uptake and translocation in common wheat (Triticum aestivum L.)[J]. Ecotoxicology and Environmental Safety, 2020, 194: 110377. doi:10.1016/j.ecoenv.2020.110377
ZULFIQAR F, NAVARRO M, ASHRAF M, et al. Nanofertilizer use for sustainable agriculture: advantages and limitations[J]. Plant Science, 2019, 289: 110270. doi:10.1016/j.plantsci.2019.110270
HASLER K, BRÖRING S, OMTA S W F, et al. Life cycle assessment (LCA) of different fertilizer product types[J]. European Journal of Agronomy, 2015, 69: 41-51. doi:10.1016/j.eja.2015.06.001
DAS R K, BRAR S K, VERMA M. Checking the biocompatibility of plant-derived metallic nanoparticles: molecular perspectives[J]. Trends in Biotechnology, 2016, 34(6): 440-449. doi:10.1016/j.tibtech.2016.02.005