铁肥施用、生物强化与人体铁素营养 - 202302 - 肥料与健康
铁肥施用、生物强化与人体铁素营养
Iron Fertilizer Application, Bio-Fortification and Human Iron Nutrition
doi: 10.3969/j.issn.2096-7047.2023.02.003
, ,
摘要:

铁是人体必需的微量元素之一,缺铁性贫血是世界上最常见的营养缺乏症,药物防治、食品防御及饮食多样化等措施在发达国家已广泛推广;在发展中国家,主要膳食结构以铁含量较低且人体利用效率较低的谷类为主,人群铁摄入量往往不足。在全球实施农业生产的生物强化工程,通过遗传育种、肥料施用等农艺措施提升谷类作物籽粒中铁的含量,可改善人体的铁营养水平。综述了全球铁与人类健康、人体铁营养摄入、作物遗传育种与铁生物强化、铁肥施用与作物铁强化等方面的研究成果。建议在“医学-营养学-农学”之间建立起跨学科体系,合作研究肥料-土壤-作物-人体系统中铁的运转与利用效率,综合解决人类铁营养健康问题。

关键词:
Abstract:

Iron is one of the essential trace elements in human body and iron deficiency anemia is the most common nutritional deficiency in the world. Measures such as drug prevention and control, food defense and diet diversification have been widely promoted in developed countries. While in developing countries, the main dietary structure is dominated by cereals with low iron content and low utilization efficiency by human body, and the population iron intake is often insufficient. The global implementation of bio-fortification projects in agricultural production to enhance the iron content in cereal seeds through genetic breeding, fertilizer application and other agronomic measures can improve the iron nutrition level in human body. The research results on global iron and human health, human iron nutrition intake, crop genetic breeding and iron bio-fortification, and iron fertilizer application and crop iron fortification are reviewed. An interdisciplinary system between "medicine, nutrition and agronomy" and cooperate to study the operation and utilization efficiency of iron in fertilizer-soil-crop-human system is suggested to establish, and solve human iron nutrition health problem comprehensively.

Keyword:
ckwx 参考文献

1

WESSLING-RESNICK M. Iron[M]//ROSS A C, CABALLERO B, COUSINS R J, et al. Modern Nutrition in Health and Disease. 11th ed. Baltimore: Lippincott Williams & Wilkins, 2014: 176-188.

2

AGGETT P J. Iron[M]//ERDMAN J W, MACDONALD I A, ZEISEL S H. Present Knowledge in Nutrition. 10th ed. Washington D C: Wiley-Blackwell, 2012: 506-520.

3

United Nations. Transforming our world: the 2030 agenda for sustainable development[EB/OL]. [2023-02-20]. https://sdgs.un.org/2030agenda.

4

联合国粮食及农业组织, 国际农业发展基金, 联合国儿童基金会, 等. 2022年世界粮食安全和营养状况: 调整粮食和农业政策, 提升健康膳食可负担性-概要[M/OL]. 罗马: 联合国粮食及农业组织, 2022[2023-02-20]. https//doi.org/10.4060/cc0640zh.

5

MARSCHNERH MARSCHNERP Marschner's mineral nutrition of higher plantsSan DiegoElsevier/Academic2012

MARSCHNER H, MARSCHNER P. Marschner's mineral nutrition of higher plants[M]. San Diego: Elsevier/Academic, 2012.

6

STEINA J Rethinking the measurement of undernutrition in a broader health context: should we look at possible causes or actual effects?Global Food Security201433/4193199

STEIN A J. Rethinking the measurement of undernutrition in a broader health context: should we look at possible causes or actual effects?[J]. Global Food Security, 2014, 3(3/4): 193-199.

7

LOWEN M The global challenge of hidden hunger: perspectives from the fieldProceedings of the Nutrition Society2021803283289

10.1017/S0029665121000902

LOWE N M. The global challenge of hidden hunger: perspectives from the field[J]. Proceedings of the Nutrition Society, 2021, 80(3): 283-289. doi:10.1017/S0029665121000902

8

BALKJ CONNORTONJ M WANY Improving wheat as a source of iron and zinc for global nutritionNutrition Bulletin201944915359

BALK J, CONNORTON J M, WAN Y, et al. Improving wheat as a source of iron and zinc for global nutrition[J]. Nutrition Bulletin, 2019, 449(1): 53-59.

9

BOUISH E Plant breeding: a new tool for fighting micronutrient malnutritionThe Journal of Nutrition20021323491S494S

10.1093/jn/132.3.491S

BOUIS H E. Plant breeding: a new tool for fighting micronutrient malnutrition[J]. The Journal of Nutrition, 2002, 132(3): 491S-494S. doi:10.1093/jn/132.3.491S

10

International Food Policy Research Institute Global nutrition report 2016: from promise to impact: ending malnutrition by 2030Washington D CInternational Food Policy Research Institute2016

International Food Policy Research Institute. Global nutrition report 2016: from promise to impact: ending malnutrition by 2030[M]. Washington D C: International Food Policy Research Institute, 2016.

11

ZIMMERMANNM B HURRELLR F Nutritional iron deficiencyThe Lancet20073709586511520

10.1016/S0140-6736(07)61235-5

ZIMMERMANN M B, HURRELL R F. Nutritional iron deficiency[J]. The Lancet, 2007, 370(9586): 511-520. doi:10.1016/S0140-6736(07)61235-5

12

ANDERSONG J FRAZERD M Current understanding of iron homeostasisAmerican Journal of Clinical Nutrition201710661559S1566S

ANDERSON G J, FRAZER D M. Current understanding of iron homeostasis[J]. American Journal of Clinical Nutrition, 2017, 106(6): 1559S-1566S.

13

World Health Organization WHO guideline on use of ferritin concentrations to assess iron status in individuals and populationsGenevaWorld Health Organization2020

World Health Organization. WHO guideline on use of ferritin concentrations to assess iron status in individuals and populations[M]. Geneva: World Health Organization, 2020.

14

KASSEBAUMN J JASRASARIAR NAGHAVIM A systematic analysis of global anemia burden from 1990 to 2010Blood20141235615624

10.1182/blood-2013-06-508325

KASSEBAUM N J, JASRASARIA R, NAGHAVI M, et al. A systematic analysis of global anemia burden from 1990 to 2010[J]. Blood, 2014, 123(5): 615-624. doi:10.1182/blood-2013-06-508325

15

JANGIRC K KUMARS LAKHRANH Towards mitigating malnutrition in pulses through biofortificationTrends in Biosciences2017101729993002

JANGIR C K, KUMAR S, LAKHRAN H, et al. Towards mitigating malnutrition in pulses through biofortification[J]. Trends in Biosciences, 2017, 10(17): 2999-3002.

16

VOST LIMS S ABBAFATIC Global burden of 369 diseases and injuries in 204 countries and territories, 1990—2019: a systematic analysis for the global burden of disease study 2019The Lancet20203961025812041222

10.1016/S0140-6736(20)30925-9

VOS T, LIM S S, ABBAFATI C, et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990—2019: a systematic analysis for the global burden of disease study 2019[J]. The Lancet, 2020, 396(10258): 1204-1222. doi:10.1016/S0140-6736(20)30925-9

17

POMPANO L. Linking iron-biofortified beans and physical performance[EB/OL]. (2020-03-03)[2023-02-20]. https://www.ifpri.org/blog/linking-iron-biofortified-beans-and-physical-performance.

18

张亮 廖勇群 夏秦川 铁死亡调控信号通路以及在相关疾病中的研究进展中国临床药理学与治疗学2022272227234

张亮, 廖勇群, 夏秦川, 等. 铁死亡调控信号通路以及在相关疾病中的研究进展[J]. 中国临床药理学与治疗学, 2022, 27(2): 227-234.

19

刘建欣 刘桂玲 李燕燕 中国2000—2020年0~14岁儿童缺铁性贫血患病率的Meta分析中国学校卫生2020411218761881

10.16835/j.cnki.1000-9817.2020.12.028

刘建欣, 刘桂玲, 李燕燕, 等. 中国2000—2020年0~14岁儿童缺铁性贫血患病率的Meta分析[J]. 中国学校卫生, 2020, 41(12): 1876-1881. doi:10.16835/j.cnki.1000-9817.2020.12.028

20

World Health Organization Guideline: intermittent iron and folic acid supplementation in menstruating womenGenevaWorld Health Organization2011

World Health Organization. Guideline: intermittent iron and folic acid supplementation in menstruating women[M]. Geneva: World Health Organization, 2011.

21

TRUMBOP YATESA A SCHLICKERS Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zincJournal of the American Dietetic Association20011013294301

10.1016/S0002-8223(01)00078-5

TRUMBO P, YATES A A, SCHLICKER S, et al. Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc[J]. Journal of the American Dietetic Association, 2001, 101(3): 294-301. doi:10.1016/S0002-8223(01)00078-5

22

PACHÓNH SPOHRERR MEIZ Evidence of the effectiveness of flour fortification programs on iron status and anemia: a systematic reviewNutrition Reviews20157311780795

10.1093/nutrit/nuv037

PACHÓN H, SPOHRER R, MEI Z, et al. Evidence of the effectiveness of flour fortification programs on iron status and anemia: a systematic review[J]. Nutrition Reviews, 2015, 73(11): 780-795. doi:10.1093/nutrit/nuv037

23

GREGORYP J WAHBIA ADU-GYAMFIJ Approaches to reduce zinc and iron deficits in food systemsGlobal Food Security201715110

10.1016/j.gfs.2017.03.003

GREGORY P J, WAHBI A, ADU-GYAMFI J, et al. Approaches to reduce zinc and iron deficits in food systems[J]. Global Food Security, 2017, 15: 1-10. doi:10.1016/j.gfs.2017.03.003

24

KUMARS ANUKIRUTHIKAT DUTTAS Iron deficiency anemia: a comprehensive review on iron absorption, bioavailability and emerging food fortification approachesTrends in Food Science & Technology2020995875

KUMAR S, ANUKIRUTHIKA T, DUTTA S, et al. Iron deficiency anemia: a comprehensive review on iron absorption, bioavailability and emerging food fortification approaches[J]. Trends in Food Science & Technology, 2020, 99: 58-75.

25

MANY XUT ADHIKARIB Iron supplementation and iron-fortified foods: a reviewCritical Reviews in Food Science and Nutrition2022621645044525

10.1080/10408398.2021.1876623

MAN Y, XU T, ADHIKARI B, et al. Iron supplementation and iron-fortified foods: a review[J]. Critical Reviews in Food Science and Nutrition, 2022, 62(16): 4504-4525. doi:10.1080/10408398.2021.1876623

26

US Department of Health and Human Services, US Department of Agriculture. Dietary guidelines for Americans 2015—2020 (8th Edition)[R/OL]. (2021-08-24)[2023-02-20]. https://health.gov/our-work/food-nutrition/previous-dietary-guidelines/2015.

27

MURRAY-KOLBE L E, BEARD J. Iron[M]//COATES P M, BLACKMAN M R, CRAGG G M, et al. Encyclopedia of dietary supplements. 2nd ed. London and New York: Informa Healthcare, 2010: 432-438.

28

HURRELLR EGLII Iron bioavailability and dietary reference valuesThe American Journal of Clinical Nutrition20109151461S1467S

10.3945/ajcn.2010.28674F

HURRELL R, EGLI I. Iron bioavailability and dietary reference values[J]. The American Journal of Clinical Nutrition, 2010, 91(5): 1461S-1467S. doi:10.3945/ajcn.2010.28674F

29

蓝丰颖 王美辰 赵艾 中国6城市2农村3~12岁儿童不同来源铁摄入情况研究中国儿童保健杂志2017258763766

蓝丰颖, 王美辰, 赵艾, 等. 中国6城市2农村3~12岁儿童不同来源铁摄入情况研究[J]. 中国儿童保健杂志, 2017, 25(8): 763-766.

30

US Department of Agriculture. What we eat in America, NHANES 2009—2010[EB/OL]. [2023-02-20]. https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/0910/tables_1-40_2009-2010.pdf.

31

MANOGUERRAA S ERDMANA R BOOZEL L Iron ingestion: an evidence-based consensus guideline for out-of-hospital managementClinical Toxicology2005436553570

10.1081/CLT-200068842

MANOGUERRA A S, ERDMAN A R, BOOZE L L, et al. Iron ingestion: an evidence-based consensus guideline for out-of-hospital management[J]. Clinical Toxicology, 2005, 43(6): 553-570. doi:10.1081/CLT-200068842

32

WHITTAKERP TUFAROP R RADERJ I Iron and folate in fortified cerealsJournal of the American College of Nutrition2001203247254

10.1080/07315724.2001.10719039

WHITTAKER P, TUFARO P R, RADER J I. Iron and folate in fortified cereals[J]. Journal of the American College of Nutrition, 2001, 20(3): 247-254. doi:10.1080/07315724.2001.10719039

33

WELCHR M Breeding strategies for biofortified staple plant foods to reduce micronutrient malnutrition globallyThe Journal of Nutrition20021323495S499S

10.1093/jn/132.3.495S

WELCH R M. Breeding strategies for biofortified staple plant foods to reduce micronutrient malnutrition globally[J]. The Journal of Nutrition, 2002, 132(3): 495S-499S. doi:10.1093/jn/132.3.495S

34

BOUISH E HOTZC MCCLAFFERTYB Biofortification: a new tool to reduce micronutrient malnutritionFood and Nutrition Bulletin201132Supplement 1S31S40

BOUIS H E, HOTZ C, MCCLAFFERTY B, et al. Biofortification: a new tool to reduce micronutrient malnutrition[J]. Food and Nutrition Bulletin, 2011, 32(Supplement 1): S31-S40.

35

BOUISH E SALTZMANA Improving nutrition through biofortification: a review of evidence from HarvestPlus, 2003 through 2016Global Food Security2017124958

10.1016/j.gfs.2017.01.009

BOUIS H E, SALTZMAN A. Improving nutrition through biofortification: a review of evidence from HarvestPlus, 2003 through 2016[J]. Global Food Security, 2017, 12: 49-58. doi:10.1016/j.gfs.2017.01.009

36

SALTZMANA BIROLE BOUISH E Biofortification: progress toward a more nourishing futureGlobal Food Security201321917

10.1016/j.gfs.2012.12.003

SALTZMAN A, BIROL E, BOUIS H E, et al. Biofortification: progress toward a more nourishing future[J]. Global Food Security, 2013, 2(1): 9-17. doi:10.1016/j.gfs.2012.12.003

37

LUDWIGY SLAMET-LOEDINI H Genetic biofortification to enrich rice and wheat grain iron: from genes to productFrontiers in Plant Science201910833

10.3389/fpls.2019.00833

LUDWIG Y, SLAMET-LOEDIN I H. Genetic biofortification to enrich rice and wheat grain iron: from genes to product[J]. Frontiers in Plant Science, 2019, 10: 833. doi:10.3389/fpls.2019.00833

38

BEASLEYJ T BONNEAUJ P SÁNCHEZ-PALACIOSJ T Metabolic engineering of bread wheat improves grain iron concentration and bioavailabilityPlant Biotechnology Journal201917815141526

10.1111/pbi.13074

BEASLEY J T, BONNEAU J P, SÁNCHEZ-PALACIOS J T, et al. Metabolic engineering of bread wheat improves grain iron concentration and bioavailability[J]. Plant Biotechnology Journal, 2019, 17(8): 1514-1526. doi:10.1111/pbi.13074

39

SHIY LIJ SUNZ Success to iron biofortification of wheat grain by combining both plant and microbial geneticsRhizosphere202015100218

10.1016/j.rhisph.2020.100218

SHI Y, LI J, SUN Z. Success to iron biofortification of wheat grain by combining both plant and microbial genetics[J]. Rhizosphere, 2020, 15: 100218. doi:10.1016/j.rhisph.2020.100218

40

ANDERSSONM S SALTZMANA VIRKP S Progress update: crop development of biofortified staple food crops under HarvestPlusAfrican Journal of Food, Agriculture, Nutrition and Development20171721190511935

10.18697/ajfand.78.HarvestPlus05

ANDERSSON M S, SALTZMAN A, VIRK P S, et al. Progress update: crop development of biofortified staple food crops under HarvestPlus[J]. African Journal of Food, Agriculture, Nutrition and Development, 2017, 17(2): 11905-11935. doi:10.18697/ajfand.78.HarvestPlus05

41

HarvestPlus. The crops: iron lentil[EB/OL]. [2023-02-20]. https://www.harvestplus.org/crop/iron-zinc-lentil/.

42

HarvestPlus. The crops: iron pearl millet[EB/OL]. [2023-02-20]. https://www.harvestplus.org/crop/iron-pearl-millet/.

43

HarvestPlus. The crops: high iron beans[EB/OL]. [2023-02-20]. https://www.harvestplus.org/wp-content/uploads/2022/01/Iron-Beans.pdf.

44

BEEBES Biofortification of common bean for higher iron concentrationFrontiers in Sustainable Food Systems20204573449

10.3389/fsufs.2020.573449

BEEBE S. Biofortification of common bean for higher iron concentration[J]. Frontiers in Sustainable Food Systems, 2020, 4: 573449. doi:10.3389/fsufs.2020.573449

45

HAASJ D LUNAS V LUNG'AHOM G Consuming iron biofortified beans increases iron status in Rwandan women after 128 days in a randomized controlled feeding trialThe Journal of Nutrition2016146815861592

10.3945/jn.115.224741

HAAS J D, LUNA S V, LUNG'AHO M G, et al. Consuming iron biofortified beans increases iron status in Rwandan women after 128 days in a randomized controlled feeding trial[J]. The Journal of Nutrition, 2016, 146(8): 1586-1592. doi:10.3945/jn.115.224741

46

MURRAY-KOLBL E WENGERM J SCOTTS P Consumption of iron-biofortified beans positively affects cognitive performance in 18- to 27-year-old Rwandan female college students in an 18-week randomized controlled efficacy trialThe Journal of Nutrition20171471121092117

10.3945/jn.117.255356

MURRAY-KOLB L E, WENGER M J, SCOTT S P, et al. Consumption of iron-biofortified beans positively affects cognitive performance in 18- to 27-year-old Rwandan female college students in an 18-week randomized controlled efficacy trial[J]. The Journal of Nutrition, 2017, 147(11): 2109-2117. doi:10.3945/jn.117.255356

47

WENGERM J RHOTENS E MURRAY-KOLBL E Changes in iron status are related to changes in brain activity and behavior in Rwandan female university students: results from a randomized controlled efficacy trial involving iron-biofortified beansThe Journal of Nutrition20191494687697

10.1093/jn/nxy265

WENGER M J, RHOTEN S E, MURRAY-KOLB L E, et al. Changes in iron status are related to changes in brain activity and behavior in Rwandan female university students: results from a randomized controlled efficacy trial involving iron-biofortified beans[J]. The Journal of Nutrition, 2019, 149(4): 687-697. doi:10.1093/jn/nxy265

48

LUNAS V POMPANOL M LUNG'AHOM Increased iron status during a feeding trial of iron-biofortified beans increases physical work efficiency in Rwandan womenThe Journal of Nutrition2020150510931099

10.1093/jn/nxaa016

LUNA S V, POMPANO L M, LUNG'AHO M, et al. Increased iron status during a feeding trial of iron-biofortified beans increases physical work efficiency in Rwandan women[J]. The Journal of Nutrition, 2020, 150(5): 1093-1099. doi:10.1093/jn/nxaa016

49

RICROCHA E HÉNARD-DAMAVEM-C Next biotech plants: new traits, crops, developers and technologies for addressing global challengesCritical Reviews in Biotechnology2016364675690

10.3109/07388551.2015.1004521

RICROCH A E, HÉNARD-DAMAVE M-C. Next biotech plants: new traits, crops, developers and technologies for addressing global challenges[J]. Critical Reviews in Biotechnology, 2016, 36(4): 675-690. doi:10.3109/07388551.2015.1004521

50

SWAMYB M MARATHIB RIBEIRO-BARROSA I Iron biofortification in rice: an update on quantitative trait loci and candidate genesFrontiers in Plant Science202112647341

10.3389/fpls.2021.647341

SWAMY B M, MARATHI B, RIBEIRO-BARROS A I, et al. Iron biofortification in rice: an update on quantitative trait loci and candidate genes[J]. Frontiers in Plant Science, 2021, 12: 647341. doi:10.3389/fpls.2021.647341

51

JOHNSONA A T KYRIACOUB CALLAHAND L Constitutive overexpression of the OsNAS gene family reveals single-gene strategies for effective iron- and zinc-biofortification of rice endospermPlos One201169e24476

10.1371/journal.pone.0024476

JOHNSON A A T, KYRIACOU B, CALLAHAN D L, et al. Constitutive overexpression of the OsNAS gene family reveals single-gene strategies for effective iron- and zinc-biofortification of rice endosperm[J]. Plos One, 2011, 6(9): e24476. doi:10.1371/journal.pone.0024476

52

TRIJATMIKOK R DUEÑASC TSAKIRPALOGLOUN Biofortified indica rice attains iron and zinc nutrition dietary targets in the fieldScientific Reports2016619792

10.1038/srep19792

TRIJATMIKO K R, DUEÑAS C, TSAKIRPALOGLOU N, et al. Biofortified indica rice attains iron and zinc nutrition dietary targets in the field[J]. Scientific Reports, 2016, 6: 19792. doi:10.1038/srep19792

53

MASUDAH ISHIMARUY AUNGM S Iron biofortification in rice by the introduction of multiple genes involved in iron nutritionScientific Reports20122543

10.1038/srep00543

MASUDA H, ISHIMARU Y, AUNG M S, et al. Iron biofortification in rice by the introduction of multiple genes involved in iron nutrition[J]. Scientific Reports, 2012, 2: 543. doi:10.1038/srep00543

54

STANGOULISJ C KNEZM Biofortification of major crop plants with iron and zinc-achievements and future directionsPlant and Soil20224745776

10.1007/s11104-022-05330-7

STANGOULIS J C, KNEZ M. Biofortification of major crop plants with iron and zinc-achievements and future directions[J]. Plant and Soil, 2022, 474: 57-76. doi:10.1007/s11104-022-05330-7

55

BANERJEES ROYP NANDIS Advanced biotechnological strategies towards the development of crops with enhanced micronutrient contentPlant Growth Regulation2023

10.1007/s10725-023-00968-4

BANERJEE S, ROY P, NANDI S, et al. Advanced biotechnological strategies towards the development of crops with enhanced micronutrient content[J]. Plant Growth Regulation, 2023, DOI: 10.1007/s10725-023-00968-4. doi:10.1007/s10725-023-00968-4

56

CAKMAKI KUTMANU B Agronomic biofortification of cereals with zinc: a reviewEuropean Journal of Soil Science2018691172180

10.1111/ejss.12437

CAKMAK I, KUTMAN U B. Agronomic biofortification of cereals with zinc: a review[J]. European Journal of Soil Science, 2018, 69(1): 172-180. doi:10.1111/ejss.12437

57

GUERINOTM L YIY Iron: nutritious, noxious, and not readily availablePlant Physiology19941043815820

10.1104/pp.104.3.815

GUERINOT M L, YI Y. Iron: nutritious, noxious, and not readily available[J]. Plant Physiology, 1994, 104(3): 815-820. doi:10.1104/pp.104.3.815

58

吴慧兰 王宁 凌宏清 植物铁吸收、转运和调控的分子机制研究进展植物学通报2007246779788

10.3969/j.issn.1674-3466.2007.06.008

吴慧兰, 王宁, 凌宏清. 植物铁吸收、转运和调控的分子机制研究进展[J]. 植物学通报, 2007, 24(6): 779-788. doi:10.3969/j.issn.1674-3466.2007.06.008

59

BRUMBAROVAT BAUERP IVANOVR Molecular mechanisms governing Arabidopsis iron uptakeTrends in Plant Scienc2015202124133

10.1016/j.tplants.2014.11.004

BRUMBAROVA T, BAUER P, IVANOV R. Molecular mechanisms governing Arabidopsis iron uptake[J]. Trends in Plant Scienc, 2015, 20(2): 124-133. doi:10.1016/j.tplants.2014.11.004

60

ROBINSONN J PROCTERC M CONNOLLYE L A ferric-chelate reductase for iron uptake from soilsNature1999397694697

10.1038/17800

ROBINSON N J, PROCTER C M, CONNOLLY E L, et al. A ferric-chelate reductase for iron uptake from soils[J]. Nature, 1999, 397: 694-697. doi:10.1038/17800

61

LIL CHENGX LINGH-Q Isolation and characterization of Fe(Ⅲ)-chelate reductase gene LeFRO1 in tomatoPlant Molecular Biology200454125136

10.1023/B:PLAN.0000028774.82782.16

LI L, CHENG X, LING H-Q. Isolation and characterization of Fe(Ⅲ)-chelate reductase gene LeFRO1 in tomato[J]. Plant Molecular Biology, 2004, 54: 125-136. doi:10.1023/B:PLAN.0000028774.82782.16

62

WATERSB M LUCENAC ROMERAF J Ethylene involvement in the regulation of the H+-ATPase CsHA1 gene and of the new isolated ferric reductase CsFRO1 and iron transporter CsIRT1 genes in cucumber plantsPlant Physiology and Biochemistry2007455293301

10.1016/j.plaphy.2007.03.011

WATERS B M, LUCENA C, ROMERA F J, et al. Ethylene involvement in the regulation of the H+-ATPase CsHA1 gene and of the new isolated ferric reductase CsFRO1 and iron transporter CsIRT1 genes in cucumber plants[J]. Plant Physiology and Biochemistry, 2007, 45(5): 293-301. doi:10.1016/j.plaphy.2007.03.011

63

DINGH DUANL WUH Regulation of AhFRO1, an Fe(Ⅲ)-chelate reductase of peanut, during iron deficiency stress and intercropping with maizePhysiologia Plantarum20091363274283

10.1111/j.1399-3054.2009.01219.x

DING H, DUAN L, WU H, et al. Regulation of AhFRO1, an Fe(Ⅲ)-chelate reductase of peanut, during iron deficiency stress and intercropping with maize[J]. Physiologia Plantarum, 2009, 136(3): 274-283. doi:10.1111/j.1399-3054.2009.01219.x

64

EIDED BRODERIUSM FETTJ A novel iron-regulated metal transporter from plants identified by functional expression in yeastProceedings of the National Academy of Sciences1996931156245628

10.1073/pnas.93.11.5624

EIDE D, BRODERIUS M, FETT J, et al. A novel iron-regulated metal transporter from plants identified by functional expression in yeast[J]. Proceedings of the National Academy of Sciences, 1996, 93(11): 5624-5628. doi:10.1073/pnas.93.11.5624

65

KOBAYASHIT NISHIZAWAN K Iron sensors and signals in response to iron deficiencyPlant Science20142243643

10.1016/j.plantsci.2014.04.002

KOBAYASHI T, NISHIZAWA N K. Iron sensors and signals in response to iron deficiency[J]. Plant Science, 2014, 224: 36-43. doi:10.1016/j.plantsci.2014.04.002

66

THOMINES WANGR WARDJ M Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genesProceedings of the National Academy of Sciences200097949914996

10.1073/pnas.97.9.4991

THOMINE S, WANG R, WARD J M, et al. Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes[J]. Proceedings of the National Academy of Sciences, 2000, 97(9): 4991-4996. doi:10.1073/pnas.97.9.4991

67

KOBAYASHIT NOZOYET NISHIZAWAN K Iron transport and its regulation in plantsFree Radical Biology and Medicine20191331120

10.1016/j.freeradbiomed.2018.10.439

KOBAYASHI T, NOZOYE T, NISHIZAWA N K. Iron transport and its regulation in plants[J]. Free Radical Biology and Medicine, 2019, 133: 11-20. doi:10.1016/j.freeradbiomed.2018.10.439

68

NOZOYET NAGASAKAS KOBAYASHIT Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plantsJournal of Biological Chemistry2011286754465454

10.1074/jbc.M110.180026

NOZOYE T, NAGASAKA S, KOBAYASHI T, et al. Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants[J]. Journal of Biological Chemistry, 2011, 286(7): 5446-5454. doi:10.1074/jbc.M110.180026

69

李俊成 于慧 杨素欣 植物对铁元素吸收的分子调控机制研究进展植物生理学报2016526835842

10.13592/j.cnki.ppj.2016.0202

李俊成, 于慧, 杨素欣, 等. 植物对铁元素吸收的分子调控机制研究进展[J]. 植物生理学报, 2016, 52(6): 835-842. doi:10.13592/j.cnki.ppj.2016.0202

70

RIAZN GUERINOTM L All together now: regulation of the iron deficiency responseJournal of Experimental Botany202172620452055

10.1093/jxb/erab003

RIAZ N, GUERINOT M L. All together now: regulation of the iron deficiency response[J]. Journal of Experimental Botany, 2021, 72(6): 2045-2055. doi:10.1093/jxb/erab003

71

VÉLEZ-BERMÚDEZI C SCHMIDTW How plants recalibrate cellular iron homeostasisPlant and Cell Physiology2022632154162

10.1093/pcp/pcab166

VÉLEZ-BERMÚDEZ I C, SCHMIDT W. How plants recalibrate cellular iron homeostasis[J]. Plant and Cell Physiology, 2022, 63(2): 154-162. doi:10.1093/pcp/pcab166

72

LIANGG Iron uptake, signaling, and sensing in plantsPlant Communications202235100349

10.1016/j.xplc.2022.100349

LIANG G. Iron uptake, signaling, and sensing in plants[J]. Plant Communications, 2022, 3(5): 100349. doi:10.1016/j.xplc.2022.100349

73

TABATAR KAMIYAT IMOTOS Systemic regulation of iron acquisition by Arabidopsis in environments with heterogeneous iron distributionsPlant and Cell Physiology2022636842854

10.1093/pcp/pcac049

TABATA R, KAMIYA T, IMOTO S, et al. Systemic regulation of iron acquisition by Arabidopsis in environments with heterogeneous iron distributions[J]. Plant and Cell Physiology, 2022, 63(6): 842-854. doi:10.1093/pcp/pcac049

74

KOBAYASHIT OGOY ITAIR N The transcription factor IDEF1 regulates the response to and tolerance of iron deficiency in plantsProceedings of the National Academy of Sciences2007104481915019155

10.1073/pnas.0707010104

KOBAYASHI T, OGO Y, ITAI R N, et al. The transcription factor IDEF1 regulates the response to and tolerance of iron deficiency in plants[J]. Proceedings of the National Academy of Sciences, 2007, 104(48): 19150-19155. doi:10.1073/pnas.0707010104

75

HARBORTC J HASHIMOTOM INOUEH Root-secreted coumarins and the microbiota interact to improve iron nutrition in ArabidopsisCell Host & Microbe2020286825837

HARBORT C J, HASHIMOTO M, INOUE H, et al. Root-secreted coumarins and the microbiota interact to improve iron nutrition in Arabidopsis[J]. Cell Host & Microbe, 2020, 28(6): 825-837.

76

MURGIAI MARZORATIF VIGANIG Plant iron nutrition: the long road from soil to seedsJournal of Experimental Botany202273618091824

10.1093/jxb/erab531

MURGIA I, MARZORATI F, VIGANI G, et al. Plant iron nutrition: the long road from soil to seeds[J]. Journal of Experimental Botany, 2022, 73(6): 1809-1824. doi:10.1093/jxb/erab531

77

JAINA WILSONG T CONNOLLYE L The diverse roles of FRO family metalloreductases in iron and copper homeostasisFrontiers in Plant Science20145100

JAIN A, WILSON G T, CONNOLLY E L. The diverse roles of FRO family metalloreductases in iron and copper homeostasis[J]. Frontiers in Plant Science, 2014, 5: 100.

78

KIMS A PUNSHONT LANZIROTTIA Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1Science2006314580312951298

10.1126/science.1132563

KIM S A, PUNSHON T, LANZIROTTI A, et al. Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1[J]. Science, 2006, 314(5803): 1295-1298. doi:10.1126/science.1132563

79

BRIATJ-F DUCC RAVETK Ferritins and iron storage in plantsBiochimica et Biophysica Acta (BBA) - General Subjects201018008806814

10.1016/j.bbagen.2009.12.003

BRIAT J-F, DUC C, RAVET K, et al. Ferritins and iron storage in plants[J]. Biochimica et Biophysica Acta (BBA) - General Subjects, 2010, 1800(8): 806-814. doi:10.1016/j.bbagen.2009.12.003

80

TARANTINOD PETITJ-M LOBREAUXS Differential involvement of the IDRS cis-element in the developmental and environmental regulation of the AtFer1 ferritin gene from ArabidopsisPlanta2003217709716

10.1007/s00425-003-1038-z

TARANTINO D, PETIT J-M, LOBREAUX S, et al. Differential involvement of the IDRS cis-element in the developmental and environmental regulation of the AtFer1 ferritin gene from Arabidopsis[J]. Planta, 2003, 217: 709-716. doi:10.1007/s00425-003-1038-z

81

TARANTINOD SANTON MORANDINIP AtFer4 ferritin is a determinant of iron homeostasis in Arabidopsis thaliana heterotrophic cellsJournal of Plant Physiology20101671815981605

10.1016/j.jplph.2010.06.020

TARANTINO D, SANTO N, MORANDINI P, et al. AtFer4 ferritin is a determinant of iron homeostasis in Arabidopsis thaliana heterotrophic cells[J]. Journal of Plant Physiology, 2010, 167(18): 1598-1605. doi:10.1016/j.jplph.2010.06.020

82

VON WIRENN KLAIRS BANSALS Nicotianamine chelates both FeⅢ and FeⅡ. Implications for metal transport in plantsPlant Physiology1999119311071114

10.1104/pp.119.3.1107

VON WIREN N, KLAIR S, BANSAL S, et al. Nicotianamine chelates both FeⅢ and FeⅡ. Implications for metal transport in plants[J]. Plant Physiology, 1999, 119(3): 1107-1114. doi:10.1104/pp.119.3.1107

83

BASHIRK RASHEEDS KOBAYASHIT Regulating subcellular metal homeostasis: the key to crop improvementFrontiers in Plant Science201671192

BASHIR K, RASHEED S, KOBAYASHI T, et al. Regulating subcellular metal homeostasis: the key to crop improvement[J]. Frontiers in Plant Science, 2016, 7: 1192.

84

常竣泊 马哲宇 丁忠杰 植物种子铁储存、运输和再利用分子机制的研究进展浙江大学学报(农业与生命科学版)2021474473480

常竣泊, 马哲宇, 丁忠杰, 等. 植物种子铁储存、运输和再利用分子机制的研究进展[J]. 浙江大学学报(农业与生命科学版), 2021, 47(4): 473-480.

85

MARIS BAILLYC THOMINES Handing off iron to the next generation: how does it get into seeds and what for?Biochemical Journal20204771259274

10.1042/BCJ20190188

MARI S, BAILLY C, THOMINE S. Handing off iron to the next generation: how does it get into seeds and what for?[J]. Biochemical Journal, 2020, 477(1): 259-274. doi:10.1042/BCJ20190188

86

RELLÁN-ÁLVAREZR ABADÍAJ ÁLVAREZ-FERNÁNDEZA Formation of metal-nicotianamine complexes as affected by pH, ligand exchange with citrate and metal exchange. A study by electrospray ionization time-of-flight mass spectrometryRapid Communications in Mass Spectrometry2008221015531562

10.1002/rcm.3523

RELLÁN-ÁLVAREZ R, ABADÍA J, ÁLVAREZ-FERNÁNDEZ A. Formation of metal-nicotianamine complexes as affected by pH, ligand exchange with citrate and metal exchange. A study by electrospray ionization time-of-flight mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2008, 22(10): 1553-1562. doi:10.1002/rcm.3523

87

MIRGORODSKAYAO A SHEVCHENKOA A CHERNUSHEVICHI V Electrospray-ionization time-of-flight mass spectrometry in protein chemistryAnalytical Chemistry199466199107

10.1021/ac00073a018

MIRGORODSKAYA O A, SHEVCHENKO A A, CHERNUSHEVICH I V, et al. Electrospray-ionization time-of-flight mass spectrometry in protein chemistry[J]. Analytical Chemistry, 1994, 66(1): 99-107. doi:10.1021/ac00073a018

88

RELLÁN-ÁLVAREZR GINER-MARTÍNEZ-SIERRAJ ORDUNAJ Identification of a tri-iron(Ⅲ), tri-citrate complex in the xylem sap of iron-deficient tomato resupplied with iron: new insights into plant iron long-distance transportPlant and Cell Physiology201051191102

10.1093/pcp/pcp170

RELLÁN-ÁLVAREZ R, GINER-MARTÍNEZ-SIERRA J, ORDUNA J, et al. Identification of a tri-iron(Ⅲ), tri-citrate complex in the xylem sap of iron-deficient tomato resupplied with iron: new insights into plant iron long-distance transport[J]. Plant and Cell Physiology, 2010, 51(1): 91-102. doi:10.1093/pcp/pcp170

89

LÓPEZ-MILLÁNA F MORALESF ABADÍAA Changes induced by Fe deficiency and Fe resupply in the organic acid metabolism of sugar beet (Beta vulgaris) leavesPhysiologia Plantarum200111213138

10.1034/j.1399-3054.2001.1120105.x

LÓPEZ-MILLÁN A F, MORALES F, ABADÍA A, et al. Changes induced by Fe deficiency and Fe resupply in the organic acid metabolism of sugar beet (Beta vulgaris) leaves[J]. Physiologia Plantarum, 2001, 112(1): 31-38. doi:10.1034/j.1399-3054.2001.1120105.x

90

YOKOSHOK YAMAJIN MAJ F OsFRDL1 expressed in nodes is required for distribution of iron to grains in riceJournal of Experimental Botany2016671854855494

10.1093/jxb/erw314

YOKOSHO K, YAMAJI N, MA J F. OsFRDL1 expressed in nodes is required for distribution of iron to grains in rice[J]. Journal of Experimental Botany, 2016, 67(18): 5485-5494. doi:10.1093/jxb/erw314

91

MORRISSEYJ BAXTERI R LEEJ The ferroportin metal efflux proteins function in iron and cobalt homeostasis in ArabidopsisThe Plant Cell2009211033263338

10.1105/tpc.109.069401

MORRISSEY J, BAXTER I R, LEE J, et al. The ferroportin metal efflux proteins function in iron and cobalt homeostasis in Arabidopsis[J]. The Plant Cell, 2009, 21(10): 3326-3338. doi:10.1105/tpc.109.069401

92

WATERSB M CHUH-H DIDONATOR J Mutations in Arabidopsis Yellow Stripe-Like1 and Yellow Stripe-Like3 reveal their roles in metal ion homeostasis and loading of metal ions in seedsPlant Physiology2006141414461458

10.1104/pp.106.082586

WATERS B M, CHU H-H, DIDONATO R J, et al. Mutations in Arabidopsis Yellow Stripe-Like1 and Yellow Stripe-Like3 reveal their roles in metal ion homeostasis and loading of metal ions in seeds[J]. Plant Physiology, 2006, 141(4): 1446-1458. doi:10.1104/pp.106.082586

93

DIDONATOR J ROBERTSL A SANDERSONT Arabidopsis Yellow Stripe-Like2 (YSL2): a metal-regulated gene encoding a plasma membrane transporter of nicotianamine-metal complexesThe Plant Journal2004393403414

10.1111/j.1365-313X.2004.02128.x

DIDONATO R J, ROBERTS L A, SANDERSON T, et al. Arabidopsis Yellow Stripe-Like2 (YSL2): a metal-regulated gene encoding a plasma membrane transporter of nicotianamine-metal complexes[J]. The Plant Journal, 2004, 39(3): 403-414. doi:10.1111/j.1365-313X.2004.02128.x

94

ISHIMARUY MASUDAH BASHIRK Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganeseThe Plant Journal2010623379390

10.1111/j.1365-313X.2010.04158.x

ISHIMARU Y, MASUDA H, BASHIR K, et al. Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese[J]. The Plant Journal, 2010, 62(3): 379-390. doi:10.1111/j.1365-313X.2010.04158.x

95

KAKEIY ISHIMARUY KOBAYASHIT OsYSL16 plays a role in the allocation of ironPlant Molecular Biology201279583594

10.1007/s11103-012-9930-1

KAKEI Y, ISHIMARU Y, KOBAYASHI T, et al. OsYSL16 plays a role in the allocation of iron[J]. Plant Molecular Biology, 2012, 79: 583-594. doi:10.1007/s11103-012-9930-1

96

AOYAMAT KOBAYASHIT TAKAHASHIM OsYSL18 is a rice iron(Ⅲ)-deoxymugineic acid transporter specifically expressed in reproductive organs and phloem of lamina jointsPlant Molecular Biology200970681692

10.1007/s11103-009-9500-3

AOYAMA T, KOBAYASHI T, TAKAHASHI M, et al. OsYSL18 is a rice iron(Ⅲ)-deoxymugineic acid transporter specifically expressed in reproductive organs and phloem of lamina joints[J]. Plant Molecular Biology, 2009, 70: 681-692. doi:10.1007/s11103-009-9500-3

97

ZHAIZ GAYOMBAS R JUNGH-I OPT3 is a phloem-specific iron transporter that is essential for systemic iron signaling and redistribution of iron and cadmium in ArabidopsisThe Plant Cell201426522492264

10.1105/tpc.114.123737

ZHAI Z, GAYOMBA S R, JUNG H-I, et al. OPT3 is a phloem-specific iron transporter that is essential for systemic iron signaling and redistribution of iron and cadmium in Arabidopsis[J]. The Plant Cell, 2014, 26(5): 2249-2264. doi:10.1105/tpc.114.123737

98

PALCHOUDHURYS JUNGJOHANNK L WEERASENAL Enhanced legume root growth with pre-soaking in α-Fe2O3 nanoparticle fertilizerRSC Advances20188432407524083

10.1039/C8RA04680H

PALCHOUDHURY S, JUNGJOHANN K L, WEERASENA L, et al. Enhanced legume root growth with pre-soaking in α-Fe2O3 nanoparticle fertilizer[J]. RSC Advances, 2018, 8(43): 24075-24083. doi:10.1039/C8RA04680H

99

刘自飞. 木质素磺酸铁肥研制及其对花生的施用效果[D]. 北京: 中国农业科学院, 2012.

100

ÀLVAREZ-FERNÀNDEZA ABADÍAJ ABADÍAA Iron deficiency, fruit yield and fruit qualityIron nutrition in plants and rhizospheric microorganisms, DordrechtSpringer200685101

ÀLVAREZ-FERNÀNDEZ A, ABADÍA J, ABADÍA A. Iron deficiency, fruit yield and fruit quality[M]//BARTON L L, ABADÍA J. Iron nutrition in plants and rhizospheric microorganisms, Dordrecht: Springer, 2006: 85-101.

101

ZULFIQARU MAQSOODM HUSSAINS Iron nutrition improves productivity, profitability, and biofortification of bread wheat under conventional and conservation tillage systemsJournal of Soil Science and Plant Nutrition20202012981310

10.1007/s42729-020-00213-1

ZULFIQAR U, MAQSOOD M, HUSSAIN S, et al. Iron nutrition improves productivity, profitability, and biofortification of bread wheat under conventional and conservation tillage systems[J]. Journal of Soil Science and Plant Nutrition, 2020, 20: 1298-1310. doi:10.1007/s42729-020-00213-1

102

GAMBLEA V HOWEJ A DELANEYD Iron chelates alleviate iron chlorosis in soybean on high pH soilsAgronomy Journal2014106412511257

10.2134/agronj13.0474

GAMBLE A V, HOWE J A, DELANEY D, et al. Iron chelates alleviate iron chlorosis in soybean on high pH soils[J]. Agronomy Journal, 2014, 106(4): 1251-1257. doi:10.2134/agronj13.0474

103

ABADÍAJ VÁZQUEZS RELLÁN-ÁLVAREZR Towards a knowledge-based correction of iron chlorosisPlant Physiology and Biochemistry2011495471482

10.1016/j.plaphy.2011.01.026

ABADÍA J, VÁZQUEZ S, RELLÁN-ÁLVAREZ R, et al. Towards a knowledge-based correction of iron chlorosis[J]. Plant Physiology and Biochemistry, 2011, 49(5): 471-482. doi:10.1016/j.plaphy.2011.01.026

104

SUZUKIM URABEA SASAKIS Development of a mugineic acid family phytosiderophore analog as an iron fertilizerNature Communications2021121558

10.1038/s41467-021-21837-6

SUZUKI M, URABE A, SASAKI S, et al. Development of a mugineic acid family phytosiderophore analog as an iron fertilizer[J]. Nature Communications, 2021, 12: 1558. doi:10.1038/s41467-021-21837-6

105

KRATENAN GÖKLERT MALTROVSKYL A unified approach to phytosiderophore natural productsChemistry-A European Journal2021272577580

10.1002/chem.202004004

KRATENA N, GÖKLER T, MALTROVSKY L, et al. A unified approach to phytosiderophore natural products[J]. Chemistry-A European Journal, 2021, 27(2): 577-580. doi:10.1002/chem.202004004

106

WANGT WANGN LUQ The active Fe chelator proline-2'-deoxymugineic acid enhances peanut yield by improving soil Fe availability and plant Fe statusPlant, Cell & Environment2023461239250

WANG T, WANG N, LU Q, et al. The active Fe chelator proline-2'-deoxymugineic acid enhances peanut yield by improving soil Fe availability and plant Fe status[J]. Plant, Cell & Environment, 2023, 46(1): 239-250.

107

MALHOTRAH PANDEYR SHARMAS Foliar fertilization: possible routes of iron transport from leaf surface to cell organellesArchives of Agronomy and Soil Science2020663279300

10.1080/03650340.2019.1616288

MALHOTRA H, PANDEY R, SHARMA S, et al. Foliar fertilization: possible routes of iron transport from leaf surface to cell organelles[J]. Archives of Agronomy and Soil Science, 2020, 66(3): 279-300. doi:10.1080/03650340.2019.1616288

108

FAROOQM WAHIDA SIDDIQUEK H M Micronutrient application through seed treatments: a reviewJournal of Soil Science and Plant Nutrition2012121125142

10.4067/S0718-95162012000100011

FAROOQ M, WAHID A, SIDDIQUE K H M. Micronutrient application through seed treatments: a review[J]. Journal of Soil Science and Plant Nutrition, 2012, 12(1): 125-142. doi:10.4067/S0718-95162012000100011

109

KIRANA WAKEELA SULTANAR Concentration and localization of Fe and Zn in wheat grain as affected by its application to soil and foliageBulletin of Environmental Contamination and Toxicology20211065852858

10.1007/s00128-021-03183-x

KIRAN A, WAKEEL A, SULTANA R, et al. Concentration and localization of Fe and Zn in wheat grain as affected by its application to soil and foliage[J]. Bulletin of Environmental Contamination and Toxicology, 2021, 106(5): 852-858. doi:10.1007/s00128-021-03183-x

110

KABIRA H PALTRIDGEN STANGOULISJ Chlorosis correction and agronomic biofortification in field peas through foliar application of iron fertilizers under Fe deficiencyJournal of Plant Interactions201611114

10.1080/17429145.2015.1125534

KABIR A H, PALTRIDGE N, STANGOULIS J. Chlorosis correction and agronomic biofortification in field peas through foliar application of iron fertilizers under Fe deficiency[J]. Journal of Plant Interactions, 2016, 11(1): 1-4. doi:10.1080/17429145.2015.1125534

111

FANGY WANGL XINZ Effect of foliar application of zinc, selenium, and iron fertilizers on nutrients concentration and yield of rice grain in ChinaJournal of Agricultural and Food Chemistry200856620792084

10.1021/jf800150z

FANG Y, WANG L, XIN Z, et al. Effect of foliar application of zinc, selenium, and iron fertilizers on nutrients concentration and yield of rice grain in China[J]. Journal of Agricultural and Food Chemistry, 2008, 56(6): 2079-2084. doi:10.1021/jf800150z

112

YUANL WUL YANGC Effects of iron and zinc foliar applications on rice plants and their grain accumulation and grain nutritional qualityJournal of the Science of Food and Agriculture2013932254261

10.1002/jsfa.5749

YUAN L, WU L, YANG C, et al. Effects of iron and zinc foliar applications on rice plants and their grain accumulation and grain nutritional quality[J]. Journal of the Science of Food and Agriculture, 2013, 93(2): 254-261. doi:10.1002/jsfa.5749

113

WEIY SHOHAGM YINGF Effect of ferrous sulfate fortification in germinated brown rice on seed iron concentration and bioavailabilityFood Chemistry20131382/319521958

WEI Y, SHOHAG M, YING F, et al. Effect of ferrous sulfate fortification in germinated brown rice on seed iron concentration and bioavailability[J]. Food Chemistry, 2013, 138(2/3): 1952-1958.

114

SUNDARIAN SINGHM UPRETIP Seed priming with iron oxide nanoparticles triggers iron acquisition and biofortification in wheat (Triticum aestivum L.) grainsJournal of Plant Growth Regulation2019381122131

10.1007/s00344-018-9818-7

SUNDARIA N, SINGH M, UPRETI P, et al. Seed priming with iron oxide nanoparticles triggers iron acquisition and biofortification in wheat (Triticum aestivum L.) grains[J]. Journal of Plant Growth Regulation, 2019, 38(1): 122-131. doi:10.1007/s00344-018-9818-7

115

ZUOY ZHANGF Iron and zinc biofortification strategies in dicot plants by intercropping with gramineous species. A reviewAgronomy for Sustainable Development20092916371

10.1051/agro:2008055

ZUO Y, ZHANG F. Iron and zinc biofortification strategies in dicot plants by intercropping with gramineous species. A review[J]. Agronomy for Sustainable Development, 2009, 29(1): 63-71. doi:10.1051/agro:2008055

116

GUNESA INALA ADAKM S Mineral nutrition of wheat, chickpea and lentil as affected by mixed cropping and soil moistureNutrient Cycling in Agroecosystems20077818396

10.1007/s10705-006-9075-1

GUNES A, INAL A, ADAK M S, et al. Mineral nutrition of wheat, chickpea and lentil as affected by mixed cropping and soil moisture[J]. Nutrient Cycling in Agroecosystems, 2007, 78(1): 83-96. doi:10.1007/s10705-006-9075-1

117

KAURA SINGHG Zinc and iron application in conjunction with nitrogen for agronomic biofortification of field crops - a reviewCrop and Pasture Science2022737/8769780

KAUR A, SINGH G. Zinc and iron application in conjunction with nitrogen for agronomic biofortification of field crops - a review[J]. Crop and Pasture Science, 2022, 73(7/8): 769-780.

118

MEDINA-LOZANOI DÍAZA Applications of genomic tools in plant breeding: crop biofortificationInternational Journal of Molecular Sciences20222363086

10.3390/ijms23063086

MEDINA-LOZANO I, DÍAZ A. Applications of genomic tools in plant breeding: crop biofortification[J]. International Journal of Molecular Sciences, 2022, 23(6): 3086. doi:10.3390/ijms23063086

119

SINGHU KUMARN PRAHARAJC S Ferti-fortification: an easy approach for nutritional enrichment of chickpeaThe Ecoscan201593/4731736

SINGH U, KUMAR N, PRAHARAJ C S, et al. Ferti-fortification: an easy approach for nutritional enrichment of chickpea[J]. The Ecoscan, 2015, 9(3/4): 731-736.

120

YAGMURM ARPALID GULSERF Effects of zinc and urea as foliar application on nutritional properties and grain yield in barley (Hordeum vulgare L. Conv. Distichon) under semi arid conditionFresenius Environmental Bulletin2017261060856092

YAGMUR M, ARPALI D, GULSER F. Effects of zinc and urea as foliar application on nutritional properties and grain yield in barley (Hordeum vulgare L. Conv. Distichon) under semi arid condition[J]. Fresenius Environmental Bulletin, 2017, 26(10): 6085-6092.

121

CHUGHG SIDDIQUEK H M SOLAIMANZ M Iron fortification of food crops through nanofertilisationCrop and Pasture Science2022738736748

10.1071/CP21436

CHUGH G, SIDDIQUE K H M, SOLAIMAN Z M. Iron fortification of food crops through nanofertilisation[J]. Crop and Pasture Science, 2022, 73(8): 736-748. doi:10.1071/CP21436

122

RUIM MAC HAOY Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea)Frontiers in Plant Science20167815

RUI M, MA C, HAO Y, et al. Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea)[J]. Frontiers in Plant Science, 2016, 7: 815.

123

HUJ GUOH LIJ Interaction of γ-Fe2O3 nanoparticles with Citrus maxima leaves and the corresponding physiological effects via foliar applicationJournal of Nanobiotechnology201715151

10.1186/s12951-017-0286-1

HU J, GUO H, LI J, et al. Interaction of γ-Fe2O3 nanoparticles with Citrus maxima leaves and the corresponding physiological effects via foliar application[J]. Journal of Nanobiotechnology, 2017, 15(1): 51. doi:10.1186/s12951-017-0286-1

124

CORREDORE TESTILLANOP S CORONADOM-J Nanoparticle penetration and transport in living pumpkin plants: in situsubcellular identificationBMC Plant Biology2009945

10.1186/1471-2229-9-45

CORREDOR E, TESTILLANO P S, CORONADO M-J, et al. Nanoparticle penetration and transport in living pumpkin plants: in situsubcellular identification[J]. BMC Plant Biology, 2009, 9: 45. doi:10.1186/1471-2229-9-45

125

PEYVANDIM PARANDEH MIRZAM Comparison of nano Fe chelate with Fe chelate effect on growth parameters and antioxidant enzymes activity of Ocimum basilicumNew Cellular and Molecular Biotechnology Journal2011148998

PEYVANDI M, PARANDE H, MIRZA M. Comparison of nano Fe chelate with Fe chelate effect on growth parameters and antioxidant enzymes activity of Ocimum basilicum[J]. New Cellular and Molecular Biotechnology Journal, 2011, 1(4): 89-98.

126

FAKHARZADEHS HAFIZIM BAGHAEIM A Using nanochelating technology for biofortification and yield increase in riceScientific Reports2020104351

10.1038/s41598-020-60189-x

FAKHARZADEH S, HAFIZI M, BAGHAEI M A, et al. Using nanochelating technology for biofortification and yield increase in rice[J]. Scientific Reports, 2020, 10: 4351. doi:10.1038/s41598-020-60189-x

127

SRIVASTAVAG DASC K DASA Seed treatment with iron pyrite (FeS2) nanoparticles increases the production of spinachRSC Advances201441025849558504

10.1039/C4RA06861K

SRIVASTAVA G, DAS C K, DAS A, et al. Seed treatment with iron pyrite (FeS2) nanoparticles increases the production of spinach[J]. RSC Advances, 2014, 4(102): 58495-58504. doi:10.1039/C4RA06861K

128

MOGHADAMA VATTANIH BAGHAEIN Effect of different levels of fertilizer nano-iron chelates on growth and yield characteristics of two varieties of spinach (Spinacia oleracea L.): Varamin 88 and ViroflayResearch Journal of Applied Sciences, Engineering and Technology201242248134818

MOGHADAM A, VATTANI H, BAGHAEI N, et al. Effect of different levels of fertilizer nano-iron chelates on growth and yield characteristics of two varieties of spinach (Spinacia oleracea L.): Varamin 88 and Viroflay[J]. Research Journal of Applied Sciences, Engineering and Technology, 2012, 4(22): 4813-4818.

129

AL-AMRIN TOMBULOGLUH SLIMANIY Size effect of iron(Ⅲ) oxide nanomaterials on the growth, and their uptake and translocation in common wheat (Triticum aestivum L.)Ecotoxicology and Environmental Safety2020194110377

10.1016/j.ecoenv.2020.110377

AL-AMRI N, TOMBULOGLU H, SLIMANI Y, et al. Size effect of iron(Ⅲ) oxide nanomaterials on the growth, and their uptake and translocation in common wheat (Triticum aestivum L.)[J]. Ecotoxicology and Environmental Safety, 2020, 194: 110377. doi:10.1016/j.ecoenv.2020.110377

130

ZULFIQARF NAVARROM ASHRAFM Nanofertilizer use for sustainable agriculture: advantages and limitationsPlant Science2019289110270

10.1016/j.plantsci.2019.110270

ZULFIQAR F, NAVARRO M, ASHRAF M, et al. Nanofertilizer use for sustainable agriculture: advantages and limitations[J]. Plant Science, 2019, 289: 110270. doi:10.1016/j.plantsci.2019.110270

131

HASLERK BRÖRINGS OMTAS W F Life cycle assessment (LCA) of different fertilizer product typesEuropean Journal of Agronomy2015694151

10.1016/j.eja.2015.06.001

HASLER K, BRÖRING S, OMTA S W F, et al. Life cycle assessment (LCA) of different fertilizer product types[J]. European Journal of Agronomy, 2015, 69: 41-51. doi:10.1016/j.eja.2015.06.001

132

DASR K BRARS K VERMAM Checking the biocompatibility of plant-derived metallic nanoparticles: molecular perspectivesTrends in Biotechnology2016346440449

10.1016/j.tibtech.2016.02.005

DAS R K, BRAR S K, VERMA M. Checking the biocompatibility of plant-derived metallic nanoparticles: molecular perspectives[J]. Trends in Biotechnology, 2016, 34(6): 440-449. doi:10.1016/j.tibtech.2016.02.005

133

PRADHANS MAILAPALLID R Interaction of engineered nanoparticles with the agri-environmentJournal of Agricultural and Food Chemistry2017653882798294

10.1021/acs.jafc.7b02528

PRADHAN S, MAILAPALLI D R. Interaction of engineered nanoparticles with the agri-environment[J]. Journal of Agricultural and Food Chemistry, 2017, 65(38): 8279-8294. doi:10.1021/acs.jafc.7b02528

当前期刊数据统计
摘要浏览量: 0
PDF下载量: 0
被引用次数: 0
扫一扫关注
肥料与健康
微信公众号