绿氨的生产和发展趋势 - 202305 - 肥料与健康
绿氨的生产和发展趋势
Production and Development Trends of Green Ammonia
doi: 10.3969/j.issn.2096-7047.2023.05.001
, ,
摘要:

用传统化石燃料生产的氨是碳排放量较大的化学品之一,无法满足碳达峰、碳中和的要求。概述了以可再生能源制取氢气,并通过对氨合成回路的技术提升,实现了氨的绿色生产。指出了大规模实施和推广绿氨生产需面对的挑战及其发展趋势。展望了氨从单纯提供作物生长所需的营养物质转变为新一代清洁能源的应用前景,可助力碳达峰、碳中和目标的实现。

关键词:
Abstract:

Ammonia produced from traditional fossil fuels is one of the chemicals with high carbon emissions, which cannot meet the requirements of peak carbon dioxide emissions and carbon neutrality. The production of hydrogen from renewable energy sources and the green production of ammonia through technological improvements in the ammonia synthesis circuit is outlined. The challenges that need to be faced and development trends in the large-scale implementation and promotion of green ammonia production are pointed out. Looking forward to the application prospects of ammonia transforming from simply providing nutrients for crop growth to a new generation of clean energy, which can help achieve peak carbon dioxide emissions and carbon neutrality goals.

Keyword:
ckwx 参考文献

1

HABERF ROSSIGNOLR L The production of synthetic ammoniaJournal of Industrial and Engineering Chemistry191354328331

10.1021/ie50052a022

HABER F, ROSSIGNOL R L. The production of synthetic ammonia[J]. Journal of Industrial and Engineering Chemistry, 1913, 5(4): 328-331. doi:10.1021/ie50052a022

2

FOSTERS L BAKOVICS I P DUDAR D Catalysts for nitrogen reduction to ammoniaNature Catalysis201817490500

10.1038/s41929-018-0092-7

FOSTER S L, BAKOVIC S I P, DUDA R D. Catalysts for nitrogen reduction to ammonia[J]. Nature Catalysis, 2018, 1(7): 490-500. doi:10.1038/s41929-018-0092-7

3

SMILV Enriching the earth: Fritz Haber, Carl Bosch, and the transformation of world food productionCambridgeThe MIT Press20003235

SMIL V. Enriching the earth: Fritz Haber, Carl Bosch, and the transformation of world food production[M]. Cambridge: The MIT Press, 2000: 32-35.

4

ERISMANJ W SUTTONM A GALLOWAYJ How a century of ammonia synthesis changed the worldNature Geoscience2008110636639

10.1038/ngeo325

ERISMAN J W, SUTTON M A, GALLOWAY J, et al. How a century of ammonia synthesis changed the world[J]. Nature Geoscience, 2008, 1(10): 636-639. doi:10.1038/ngeo325

5

International Energy Agency. The future of hydrogen: seizing today's opportunities[EB/OL]. (2019-06-14)[2023-03-31]. https://www.iea.org/events/the-future-of-hydrogen-seizing-todays-opportunities.

6

MACFARLANED R CHEREPANOVP V CHOIJ A roadmap to the ammonia economyJoule20204611861205

10.1016/j.joule.2020.04.004

MACFARLANE D R, CHEREPANOV P V, CHOI J, et al. A roadmap to the ammonia economy[J]. Joule, 2020, 4(6): 1186-1205. doi:10.1016/j.joule.2020.04.004

7

巩聪聪 《中国氢能源及燃料电池产业白皮书》发布山东国资2019614

巩聪聪. 《中国氢能源及燃料电池产业白皮书》发布[J]. 山东国资, 2019(6): 14.

8

WISMANNS T ENGBÆKJ S VENDELBOS B Electrified methane reforming: a compact approach to greener industrial hydrogen productionScience20193646442756759

10.1126/science.aaw8775

WISMANN S T, ENGBÆK J S, VENDELBO S B, et al. Electrified methane reforming: a compact approach to greener industrial hydrogen production[J]. Science, 2019, 364(6442): 756-759. doi:10.1126/science.aaw8775

9

European Fertilizer Manufacturers' Association. Best available techniques for pollution prevention and control in the European fertilizer industry[EB/OL]. 2000 ed. [2023-03-31]. https://www.fertilizerseurope.com/wp-content/uploads/2019/08/Booklet_1_final.pdf.

10

BRIGHTLINGJ Ammonia and the fertiliser industry: the development of ammonia at BillinghamJohnson Matthey Technology Review20186213247

10.1595/205651318X696341

BRIGHTLING J. Ammonia and the fertiliser industry: the development of ammonia at Billingham[J]. Johnson Matthey Technology Review, 2018, 62(1): 32-47. doi:10.1595/205651318X696341

11

BUTTLERA SPLIETHOFFH Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: a reviewRenewable and Sustainable Energy Reviews20188224402454

10.1016/j.rser.2017.09.003

BUTTLER A, SPLIETHOFF H. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 2440-2454. doi:10.1016/j.rser.2017.09.003

12

ANDERSSONJ GRÖNKVISTS Large-scale storage of hydrogenInternational Journal of Hydrogen Energy201944231190111919

10.1016/j.ijhydene.2019.03.063

ANDERSSON J, GRÖNKVIST S. Large-scale storage of hydrogen[J]. International Journal of Hydrogen Energy, 2019, 44(23): 11901-11919. doi:10.1016/j.ijhydene.2019.03.063

13

OLIVIERP BOURASSEAUC BOUAMAMAP B Low-temperature electrolysis system modelling: a reviewRenewable and Sustainable Energy Reviews201778280300

10.1016/j.rser.2017.03.099

OLIVIER P, BOURASSEAU C, BOUAMAMA P B. Low-temperature electrolysis system modelling: a review[J]. Renewable and Sustainable Energy Reviews, 2017, 78: 280-300. doi:10.1016/j.rser.2017.03.099

14

OUWELTJES J P, BERKEVELD L, RIETVELD B. Recent progress in the development of solid oxide electrolyzers at ECN[EB/OL]. [2023-03-31]. https://juser.fz-juelich.de/record/135448/files/HP3b_2_Lefebvre-Joud-_Ouweltjes_.pdf.

15

CARMOM FRITZD L MERGELJ A comprehensive review on PEM water electrolysisInternational Journal of Hydrogen Energy2013381249014934

10.1016/j.ijhydene.2013.01.151

CARMO M, FRITZ D L, MERGEL J, et al. A comprehensive review on PEM water electrolysis[J]. International Journal of Hydrogen Energy, 2013, 38(12): 4901-4934. doi:10.1016/j.ijhydene.2013.01.151

16

HANSENJ B HENDRIKSENP V The SOC4NH3 project. Production and use of ammonia by solid oxide cellsThe Electrochemical Society201991124552465

HANSEN J B, HENDRIKSEN P V. The SOC4NH3 project. Production and use of ammonia by solid oxide cells[J]. The Electrochemical Society, 2019, 91(1): 2455-2465.

17

LOMBARDIL CARNEVALEE CORTIA A review of technologies and performances of thermal treatment systems for energy recovery from wasteWaste Management2014372644

LOMBARDI L, CARNEVALE E, CORTI A. A review of technologies and performances of thermal treatment systems for energy recovery from waste[J]. Waste Management, 2014, 37: 26-44.

18

DOUB ZHANGH SONGY Hydrogen production from the thermochemical conversion of biomass: issues and challengesSustain Energy and Fuels20192314342

DOU B, ZHANG H, SONG Y, et al. Hydrogen production from the thermochemical conversion of biomass: issues and challenges[J]. Sustain Energy and Fuels, 2019(2): 314-342.

19

孙佳 王涛 利用农业废弃资源发酵制氢的研究进展现代化农业201184142

孙佳, 王涛. 利用农业废弃资源发酵制氢的研究进展[J]. 现代化农业, 2011(8): 41-42.

20

SERRANO J, RUIZ-RAMIRO M P, FARIA J. Biological feedstocks for biofuels[M]//LUQUE R, COLMENARES J C. An introduction to green chemistry methods. London: Future Science, 2013: 116-130.

21

ROUWENHORSTK H R HAMA G J V MULG Islanded ammonia power systems: technology review & conceptual process design,Renewable and Sustainable Energy Reviews2019114109339

10.1016/j.rser.2019.109339

ROUWENHORST K H R, HAM A G J V, MUL G, et al. Islanded ammonia power systems: technology review & conceptual process design, [J]. Renewable and Sustainable Energy Reviews, 2019, 114: 109339. doi:10.1016/j.rser.2019.109339

22

LOGADOTTIRA RODT H NØRSKOVJ K The brønsted-evans-polanyi relation and the volcano plot for ammonia synthesis over transition metal catalystsJournal of Catalysis20011972229231

10.1006/jcat.2000.3087

LOGADOTTIR A, ROD T H, NØRSKOV J K, et al. The brønsted-evans-polanyi relation and the volcano plot for ammonia synthesis over transition metal catalysts[J]. Journal of Catalysis, 2001, 197(2): 229-231. doi:10.1006/jcat.2000.3087

23

LIUH Ammonia synthesis catalyst 100 years: practice, enlightenment and challengeChinese Journal of Catalysis2014351016191640

10.1016/S1872-2067(14)60118-2

LIU H. Ammonia synthesis catalyst 100 years: practice, enlightenment and challenge[J]. Chinese Journal of Catalysis, 2014, 35(10): 1619-1640. doi:10.1016/S1872-2067(14)60118-2

24

APPLM Ammonia: principles and industrial practiceWeinheimWiley-VCH Verlag GmbH1999

APPL M. Ammonia: principles and industrial practice[M]. Weinheim: Wiley-VCH Verlag GmbH, 1999.

25

BAÑARES-ALCÁNTARA R, DERICKS Ⅲ G, FIASCHETTI M, et al. Analysis of islanded ammonia-based energy storage systems[EB/OL]. [2023-03-31]. https://eng.ox.ac.uk/media/11082/ammonia-based_ess.pdf.

26

BROWND E EDMONDST JOYNERR W The genesis and development of the commercial BP doubly promoted catalyst for ammonia synthesisCatalysis Letters20141444545552

10.1007/s10562-014-1226-4

BROWN D E, EDMONDS T, JOYNER R W, et al. The genesis and development of the commercial BP doubly promoted catalyst for ammonia synthesis[J]. Catalysis Letters, 2014, 144(4): 545-552. doi:10.1007/s10562-014-1226-4

27

SMITHC MCCORMICKA V CUSSLERE L Optimizing the conditions for ammonia production using absorptionACS Sustainable Chemistry and Engineering20197440194029

10.1021/acssuschemeng.8b05395

SMITH C, MCCORMICK A V, CUSSLER E L. Optimizing the conditions for ammonia production using absorption[J]. ACS Sustainable Chemistry and Engineering, 2019, 7(4): 4019-4029. doi:10.1021/acssuschemeng.8b05395

28

CAN F, COURTOIS X, DUPREZ D. NSR-SCR combined systems: production and use of ammonia[M]//TRONCONI I N E. Urea-SCR technology for deNOx after treatment of diesel exhausts. New York: Springer, 2014: 587-622.

29

NAYAK-LUKER BAÑARES-ALCÁNTARAR WILKINSONI "Green" ammonia: impact of renewable energy intermittency on plant sizing and levelized cost of ammoniaIndustrial and Engineering Chemistry Research201857431460714616

10.1021/acs.iecr.8b02447

NAYAK-LUKE R, BAÑARES-ALCÁNTARA R, WILKINSON I. "Green" ammonia: impact of renewable energy intermittency on plant sizing and levelized cost of ammonia[J]. Industrial and Engineering Chemistry Research, 2018, 57(43): 14607-14616. doi:10.1021/acs.iecr.8b02447

30

HEUSERP-M RYBERGD S GRUBET Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogenInternational Journal of Hydrogen Energy201944251273312747

10.1016/j.ijhydene.2018.12.156

HEUSER P-M, RYBERG D S, GRUBE T, et al. Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen[J]. International Journal of Hydrogen Energy, 2019, 44(25): 12733-12747. doi:10.1016/j.ijhydene.2018.12.156

31

ARAEM. Infrastructure for renewable hydrogen-ammonia production and export[EB/OL]. [2023-03-30]. https://www.renewablehydrogen.com.au/copy-of-our-ip-h2-supply-chain-infr.

32

Institute for Sustainable Process Technolgy(ISPT). Power to ammonia 2017[EB/OL]. (2020-03-11)[2023-03-30]. https://ispt.eu/publications/power-to-ammonia-2017/.

33

PERNER J, BOTHE D. International aspects of a power-to-X roadmap: a report for the world energy council Germany[EB/OL]. (2018-10-16)[2023-03-31]. https://www.weltenergierat.de/wp-content/uploads/2018/10/20181018_WEC_Germany_PTXroadmap_Full-study-englisch.pdf.

34

靳雅洁, 赵若伊. 中国首个全动态碳中和绿氨项目签约[EB/OL]. (2023-02-03)[2023-03-31]. http://www.ccin.com.cn/detail/979cde6bb0f9c905426480c0c953f6c7.

35

ARMIJOJ PHILIBERTC Flexible production of green hydrogen and ammonia from variable solar and wind energy: case study of Chile and ArgentinaInternational Journal of Hydrogen Energy202045315411558

10.1016/j.ijhydene.2019.11.028

ARMIJO J, PHILIBERT C. Flexible production of green hydrogen and ammonia from variable solar and wind energy: case study of Chile and Argentina[J]. International Journal of Hydrogen Energy, 2020, 45(3): 1541-1558. doi:10.1016/j.ijhydene.2019.11.028

36

NAYAK-LUKER BAÑARES-ALCÁNTARAR Techno-economic viability of islanded green ammonia as a carbon-free energy vector and as a substitute for conventional productionEnergy and Environmental Science202013629572966

NAYAK-LUKE R, BAÑARES-ALCÁNTARA R. Techno-economic viability of islanded green ammonia as a carbon-free energy vector and as a substitute for conventional production[J]. Energy and Environmental Science, 2020, 13(6): 2957-2966.

37

EICHHAMMER W, OBERLE S, HÄNDEL M, et al. Study on the opportunities of "Power-to-X" in Morocco: 10 hypotheses for discussion[EB/OL]. [2023-03-31]. https://publica-rest.fraunhofer.de/server/api/core/bitstreams/5156d310-48ac-4e84-a6ec-3e657b93e198/content.

38

NIEUWENHUYSE A E. Guidance for inspection of atmospheric, refrigerated ammonia storage tanks[EB/OL]. [2023-03-31]. https://www.fertilizerseurope.com/wp-content/uploads/2019/08/Guidance_for_inspection_of_atmospheric__refrigerated_ammonia_storage_tanksVJ_websitepdf.

39

苗俊艳 侯翠红 许秀成 正在全球兴起的未来肥料产业肥料与健康202047516

苗俊艳, 侯翠红, 许秀成. 正在全球兴起的未来肥料产业[J]. 肥料与健康, 2020, 47(5): 1-6.

40

VALERA-MEDINA A. Storage of ammonia for energy (SAFE)-AGT pilot[EB/OL]. [2023-03-31]. https://gtr.ukri.org/projects?ref=EP%2FT009314%2F1.

41

EUROPEAN COMMISSION. Integrated solutions for flexible operation of fossil fuel power plants through power-to-X-to-power and/or energy storage[EB/OL]. [2023-03-31]. https://cordis.europa.eu/programme/id/H2020_LC-SC3-NZE-4-2019.

42

BP. BP Australia announces feasibility study into hydrogen energy production facility[EB/OL]. (2020-05-08)[2023-03-31]. https://www.bp.com/en/global/corporate/news-and- insights/press-releases/bp-australia-announces-feasibility-study-into- hydrogen-energy-production-facility.html.

43

AUSTRALIAN RENEWABLE ENERGY AGENCY (ARENA). Queensland green ammonia plant could use renewable hydrogen[EB/OL]. (2019-09-30)[2023-03-31]. https://arena.gov.au/news/queensland-green-ammonia-plant-could-use-renewable-hydrogen/.

当前期刊数据统计
摘要浏览量: 0
PDF下载量: 0
被引用次数: 0
扫一扫关注
肥料与健康
微信公众号