肥料增效剂的种类及作用原理 - 202403 - 肥料与健康
肥料增效剂的种类及作用原理
Types and Working Principles of Fertilizer Synergists
doi: 10.3969/j.issn.2096-7047.2024.03.001
, ,
摘要:

通过中国知网(CNKI)数据库,以“肥料增效剂”“硝化抑制剂”“脲酶抑制剂”“腐殖质”“腐殖酸”“微生物肥料”“氨基酸肥料”等为关键词搜索发表于2000—2023年的文献,并将获得的8 805篇文献记录导入VOSviewer软件中进行关键词聚类分析。结果表明:肥料增效剂主要分为生物类和化学类两大类,其中化学类肥料增效剂主要为脲酶抑制剂类和硝化抑制剂类,生物类肥料增效剂主要为腐殖质类、氨基酸类、微生物类等。概述了生物类和化学类肥料增效剂的作用原理,提出了肥料增效剂在实际应用中存在的问题,并对今后肥料增效剂的创新方向提出了展望。

关键词:
Abstract:

Through the China National Knowledge Infrastructure (CNKI) database, literature published from 2000 to 2023 is searched using keywords such as "fertilizer synergist", "nitrification inhibitor", "urease inhibitor", "humus", "humic acid", "microbial fertilizer", "amino acid fertilizer", etc. The obtained 8 805 literature records are imported into VOSviewer software for keyword cluster analysis. The results show that fertilizer synergists are mainly divided into two categories: biological and chemical. Between these two categories, chemical fertilizer synergists are mainly urease inhibitors and nitrification inhibitors, while biological fertilizer synergists are mainly humic substances, amino acids, microorganisms, etc. An overview of the working principles of biological and chemical fertilizer synergists is provided, the problems that exist in the practical application of fertilizer synergists are point out, and the innovative direction of fertilizer synergists in the future is proposed.

Keyword:
ckwx 参考文献

1

李慧敏 陈骏 束维正 生测试验在肥料增效剂筛选中的应用中国盐业2021165457

李慧敏, 陈骏, 束维正, 等. 生测试验在肥料增效剂筛选中的应用[J]. 中国盐业, 2021(16): 54-57.

2

CUIZ L WANGG L YUES C Closing the N-use efficiency gap to achieve food and environmental securityEnvironmental Science & Technology2014481057805787

CUI Z L, WANG G L, YUE S C, et al. Closing the N-use efficiency gap to achieve food and environmental security[J]. Environmental Science & Technology, 2014, 48(10): 5780-5787.

3

AMON-ARMAHF YIRIDOEE K JAMIESONR Comparison of crop yield and pollution production response to nitrogen fertilization models, accounting for crop rotation effectAgroecology and Sustainable Food Systems2015393245275

10.1080/21683565.2014.967435

AMON-ARMAH F, YIRIDOE E K, JAMIESON R, et al. Comparison of crop yield and pollution production response to nitrogen fertilization models, accounting for crop rotation effect[J]. Agroecology and Sustainable Food Systems, 2015, 39(3): 245-275. doi:10.1080/21683565.2014.967435

4

国家统计局农村社会经济调查司 中国农村统计年鉴(2023)北京中国统计出版社2023

国家统计局农村社会经济调查司. 中国农村统计年鉴(2023)[M]. 北京: 中国统计出版社, 2023.

5

CHENX X WANGC Y FUJ J Research status and progress of inhibitory effects and inhibitory mechanism of complex-type urease inhibitors - a reviewCommunications in Soil Science and Plant Analysis2019506772781

10.1080/00103624.2019.1579826

CHEN X X, WANG C Y, FU J J, et al. Research status and progress of inhibitory effects and inhibitory mechanism of complex-type urease inhibitors - a review[J]. Communications in Soil Science and Plant Analysis, 2019, 50(6): 772-781. doi:10.1080/00103624.2019.1579826

6

隽英华 陈利军 武志杰 脲酶/硝化抑制剂在土壤N转化过程中的作用土壤通报20074773780

隽英华, 陈利军, 武志杰, 等. 脲酶/硝化抑制剂在土壤N转化过程中的作用[J]. 土壤通报, 2007(4): 773-780.

7

KRAJEWSKAB Ureases Ⅰ. Functional, catalytic and kinetic properties: a reviewJournal of Molecular Catalysis B: Enzymatic2009591/3921

KRAJEWSKA B. Ureases Ⅰ. Functional, catalytic and kinetic properties: a review[J]. Journal of Molecular Catalysis B: Enzymatic, 2009, 59(1/3): 9-21.

8

李思平 刘蕊 刘家欢 稳定性肥料产业发展创新及展望现代化工2022421118

李思平, 刘蕊, 刘家欢, 等. 稳定性肥料产业发展创新及展望[J]. 现代化工, 2022, 42(11): 1-8.

9

YANGM FANGY T SUND Efficiency of two nitrification inhibitors (dicyandiamide and 3, 4-dimethypyrazole phosphate) on soil nitrogen transformations and plant productivity: a meta-analysisScientific Reports2016622075

10.1038/srep22075

YANG M, FANG Y T, SUN D, et al. Efficiency of two nitrification inhibitors (dicyandiamide and 3, 4-dimethypyrazole phosphate) on soil nitrogen transformations and plant productivity: a meta-analysis[J]. Scientific Reports, 2016, 6: 22075. doi:10.1038/srep22075

10

DOMÍNGUEZM J SANMARTÍNC FONTM Design, synthesis, and biological evaluation of phosphoramide derivatives as urease inhibitorsJournal of Agricultural and Food Chemistry2008561037213731

10.1021/jf072901y

DOMÍNGUEZ M J, SANMARTÍN C, FONT M, et al. Design, synthesis, and biological evaluation of phosphoramide derivatives as urease inhibitors[J]. Journal of Agricultural and Food Chemistry, 2008, 56(10): 3721-3731. doi:10.1021/jf072901y

11

KOTM ZABORSKAW ORLINSKAK Inhibition of jack bean urease by N-(n-butyl)thiophosphorictriamide and N-(n-butyl)phosphorictriamide: determination of the inhibition mechanismJournal of Enzyme Inhibition2001166507516

10.1080/14756360127569

KOT M, ZABORSKA W, ORLINSKA K. Inhibition of jack bean urease by N-(n-butyl)thiophosphorictriamide and N-(n-butyl)phosphorictriamide: determination of the inhibition mechanism[J]. Journal of Enzyme Inhibition, 2001, 16(6): 507-516. doi:10.1080/14756360127569

12

BENINIS CIURLIS NOLTINGH F X-ray absorption spectroscopy study of native and phenylphosphorodiamidate-inhibited Bacillus pasteurii ureaseEuropean Journal of Biochemistry199623916166

10.1111/j.1432-1033.1996.0061u.x

BENINI S, CIURLI S, NOLTING H F, et al. X-ray absorption spectroscopy study of native and phenylphosphorodiamidate-inhibited Bacillus pasteurii urease[J]. European Journal of Biochemistry, 1996, 239(1): 61-66. doi:10.1111/j.1432-1033.1996.0061u.x

13

ARISTOTELIL P O'ROURKEJ L DANONS Urea, fluorofamide, and omeprazole treatments alter Helicobacter colonization in the mouse gastric mucosaHelicobacter2006115460468

10.1111/j.1523-5378.2006.00439.x

ARISTOTELI L P, O'ROURKE J L, DANON S, et al. Urea, fluorofamide, and omeprazole treatments alter Helicobacter colonization in the mouse gastric mucosa[J]. Helicobacter, 2006, 11(5): 460-468. doi:10.1111/j.1523-5378.2006.00439.x

14

GILLJ S BIJAY-SINGH KHINDC S Efficiency of N-(n-butyl) thiophosphoric triamide in retarding hydrolysis of urea and ammonia volatilization losses in a flooded sandy loam soil amended with organic materialsNutrient Cycling in Agroecosystems199953203207

10.1023/A:1009702707389

GILL J S, BIJAY-SINGH, KHIND C S, et al. Efficiency of N-(n-butyl) thiophosphoric triamide in retarding hydrolysis of urea and ammonia volatilization losses in a flooded sandy loam soil amended with organic materials[J]. Nutrient Cycling in Agroecosystems, 1999, 53: 203-207. doi:10.1023/A:1009702707389

15

彭玉净 田玉华 尹斌 添加脲酶抑制剂NBPT对麦秆还田稻田氨挥发的影响中国生态农业学报20122011923

彭玉净, 田玉华, 尹斌. 添加脲酶抑制剂NBPT对麦秆还田稻田氨挥发的影响[J]. 中国生态农业学报, 2012, 20(1): 19-23.

16

周丽娜 金建新 李凤霞 尿素配施脲酶抑制剂对春玉米株高和生物量的影响宁夏农林科技201758125355

周丽娜, 金建新, 李凤霞, 等. 尿素配施脲酶抑制剂对春玉米株高和生物量的影响[J]. 宁夏农林科技, 2017, 58(12): 53-55.

17

张文学 杨成春 王少先 脲酶抑制剂与硝化抑制剂对稻田土壤氮素转化的影响中国水稻科学2017314417424

张文学, 杨成春, 王少先, 等. 脲酶抑制剂与硝化抑制剂对稻田土壤氮素转化的影响[J]. 中国水稻科学, 2017, 31(4): 417-424.

18

SANZ-COBENAA MISSELBROOKT H ARCEA An inhibitor of urease activity effectively reduces ammonia emissions from soil treated with urea under Mediterranean conditionsAgriculture, Ecosystems and Environment20081263/4243249

SANZ-COBENA A, MISSELBROOK T H, ARCE A, et al. An inhibitor of urease activity effectively reduces ammonia emissions from soil treated with urea under Mediterranean conditions[J]. Agriculture, Ecosystems and Environment, 2008, 126(3/4): 243-249.

19

SUBBARAOG V SAHRAWATK L NAKAHARAK Chapter six - biological nitrification inhibition—a novel strategy to regulate nitrification in agricultural systemsAdvances in Agronomy2012114249302

SUBBARAO G V, SAHRAWAT K L, NAKAHARA K, et al. Chapter six - biological nitrification inhibition—a novel strategy to regulate nitrification in agricultural systems[J]. Advances in Agronomy, 2012, 114: 249-302.

20

SCHLESINGERW H On the fate of anthropogenic nitrogenProceedings of the National Academy of Sciences of the United States of America20091061203208

SCHLESINGER W H. On the fate of anthropogenic nitrogen[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(1): 203-208.

21

LIUR HUH W SUTERH Nitrification is a primary driver of nitrous oxide production in laboratory microcosms from different land-use soilsFrontiers in Microbiology201671373

LIU R, HU H W, SUTER H, et al. Nitrification is a primary driver of nitrous oxide production in laboratory microcosms from different land-use soils[J]. Frontiers in Microbiology, 2016(7): 1373.

22

GALLOWAYJ N TOWNSENDA R ERISMANJ W Transformation of the nitrogen cycle: recent trends, questions, and potential solutionsScience20083205878889892

10.1126/science.1136674

GALLOWAY J N, TOWNSEND A R, ERISMAN J W, et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions[J]. Science, 2008, 320(5878): 889-892. doi:10.1126/science.1136674

23

WANGX BAIJ H XIET Effects of biological nitrification inhibitors on nitrogen use efficiency and greenhouse gas emissions in agricultural soils: a reviewEcotoxicology and Environmental Safety2021220112338

10.1016/j.ecoenv.2021.112338

WANG X, BAI J H, XIE T, et al. Effects of biological nitrification inhibitors on nitrogen use efficiency and greenhouse gas emissions in agricultural soils: a review[J]. Ecotoxicology and Environmental Safety, 2021, 220: 112338. doi:10.1016/j.ecoenv.2021.112338

24

王静 万水霞 李帆 抑制剂对稻茬小麦产量及氮素利用效率的影响麦类作物学报202343911651173

王静, 万水霞, 李帆, 等. 抑制剂对稻茬小麦产量及氮素利用效率的影响[J]. 麦类作物学报, 2023, 43(9): 1165-1173.

25

曾科 王书伟 朱文彬 不同硝化抑制剂对稻季N2O排放、NH3挥发和水稻产量的影响土壤2023553503511

曾科, 王书伟, 朱文彬, 等. 不同硝化抑制剂对稻季N2O排放、NH3挥发和水稻产量的影响[J]. 土壤, 2023, 55(3): 503-511.

26

HARTYM A MCGEOUGHK L CAROLANR Gross nitrogen transformations in grassland soil react differently to urea stabilisers under laboratory and field conditionsSoil Biology and Biochemistry20171092334

10.1016/j.soilbio.2017.01.025

HARTY M A, MCGEOUGH K L, CAROLAN R, et al. Gross nitrogen transformations in grassland soil react differently to urea stabilisers under laboratory and field conditions[J]. Soil Biology and Biochemistry, 2017, 109: 23-34. doi:10.1016/j.soilbio.2017.01.025

27

LIUS Y CHIQ D SHANJ Evaluation of the effectiveness of N process inhibitors in paddy rice via a 15N tracing approachSoil Biology and Biochemistry2020147107855

10.1016/j.soilbio.2020.107855

LIU S Y, CHI Q D, SHAN J, et al. Evaluation of the effectiveness of N process inhibitors in paddy rice via a 15N tracing approach[J]. Soil Biology and Biochemistry, 2020, 147: 107855. doi:10.1016/j.soilbio.2020.107855

28

陆玉芳 施卫明 生物硝化抑制剂的研究进展及其农业应用前景土壤学报2021583545557

陆玉芳, 施卫明. 生物硝化抑制剂的研究进展及其农业应用前景[J]. 土壤学报, 2021, 58(3): 545-557.

29

TORRALBOF MENÉNDEZS BARRENAI Dimethyl pyrazol-based nitrifcation inhibitors efect on nitrifying and denitrifying bacteria to mitigate N2O emissionScientific Reports2017713810

10.1038/s41598-017-14225-y

TORRALBO F, MENÉNDEZ S, BARRENA I, et al. Dimethyl pyrazol-based nitrifcation inhibitors efect on nitrifying and denitrifying bacteria to mitigate N2O emission[J]. Scientific Reports, 2017, 7: 13810. doi:10.1038/s41598-017-14225-y

30

BYRNEM P TOBINJ T FORRESTALP J Urease and nitrification inhibitors—as mitigation tools for greenhouse gas emissions in sustainable dairy systems: a reviewSustainability202012156018

10.3390/su12156018

BYRNE M P, TOBIN J T, FORRESTAL P J, et al. Urease and nitrification inhibitors—as mitigation tools for greenhouse gas emissions in sustainable dairy systems: a review[J]. Sustainability, 2020, 12(15): 6018. doi:10.3390/su12156018

31

ZERULLAW BARTHT DRESSELJ 3, 4-Dimethylpyrazole phosphate (DMPP) - a new nitrification inhibitor for agriculture and horticultureBioligy and Fertility of Soils2001347984

10.1007/s003740100380

ZERULLA W, BARTH T, DRESSEL J, et al. 3, 4-Dimethylpyrazole phosphate (DMPP) - a new nitrification inhibitor for agriculture and horticulture[J]. Bioligy and Fertility of Soils, 2001, 34: 79-84. doi:10.1007/s003740100380

32

FUJ J WANGC Y CHENX X Classification research and types of slow controlled release fertilizers (SRFs) used - a reviewCommunications in Soil Science and Plant Analysis2018491722192230

10.1080/00103624.2018.1499757

FU J J, WANG C Y, CHEN X X, et al. Classification research and types of slow controlled release fertilizers (SRFs) used - a review[J]. Communications in Soil Science and Plant Analysis, 2018, 49(17): 2219-2230. doi:10.1080/00103624.2018.1499757

33

SUBBARAOG V ITOO SAHRAWATK L Scope and strategies for regulation of nitrification in agricultural systems—challenges and opportunitiesCritical Reviews in Plant Sciences2006254303335

10.1080/07352680600794232

SUBBARAO G V, ITO O, SAHRAWAT K L, et al. Scope and strategies for regulation of nitrification in agricultural systems—challenges and opportunities[J]. Critical Reviews in Plant Sciences, 2006, 25(4): 303-335. doi:10.1080/07352680600794232

34

HUÉRFANOX FUERTES-MENDIZÁBALT FERNÁNDEZ-DIEZK The new nitrification inhibitor 3, 4-dimethylpyrazole succinic (DMPSA) as an alternative to DMPP for reducing N2O emissions from wheat crops under humid Mediterranean conditionsEuropean Journal of Agronomy2016807887

10.1016/j.eja.2016.07.001

HUÉRFANO X, FUERTES-MENDIZÁBAL T, FERNÁNDEZ-DIEZ K, et al. The new nitrification inhibitor 3, 4-dimethylpyrazole succinic (DMPSA) as an alternative to DMPP for reducing N2O emissions from wheat crops under humid Mediterranean conditions[J]. European Journal of Agronomy, 2016, 80: 78-87. doi:10.1016/j.eja.2016.07.001

35

ZACHERLB AMBERGERA Effect of the nitrification inhibitors dicyandiamide, nitrapyrin and thiourea on Nitrosomonas europaeaFertilizer Research1990223744

10.1007/BF01054805

ZACHERL B, AMBERGER A. Effect of the nitrification inhibitors dicyandiamide, nitrapyrin and thiourea on Nitrosomonas europaea[J]. Fertilizer Research, 1990, 22: 37-44. doi:10.1007/BF01054805

36

MCGEOUGHK L WATSONC J MVLLERC Evidence that the efficacy of the nitrification inhibitor dicyandiamide (DCD) is affected by soil properties in UK soilsSoil Biology and Biochemistry201694222232

10.1016/j.soilbio.2015.11.017

MCGEOUGH K L, WATSON C J, MVLLER C, et al. Evidence that the efficacy of the nitrification inhibitor dicyandiamide (DCD) is affected by soil properties in UK soils[J]. Soil Biology and Biochemistry, 2016, 94: 222-232. doi:10.1016/j.soilbio.2015.11.017

37

GILSANZC BÁEZD MISSELBROOKT H Development of emission factors and efficiency of two nitrification inhibitors, DCD and DMPPAgriculture, Ecosystems and Environment201621618

10.1016/j.agee.2015.09.030

GILSANZ C, BÁEZ D, MISSELBROOK T H, et al. Development of emission factors and efficiency of two nitrification inhibitors, DCD and DMPP[J]. Agriculture, Ecosystems and Environment, 2016, 216: 1-8. doi:10.1016/j.agee.2015.09.030

38

WANGD Y GUOL P ZHENGL Effects of nitrogen fertilizer and water management practices on nitrogen leaching from a typical open field used for vegetable planting in northern ChinaAgricultural Water Management2019213913921

10.1016/j.agwat.2018.12.015

WANG D Y, GUO L P, ZHENG L, et al. Effects of nitrogen fertilizer and water management practices on nitrogen leaching from a typical open field used for vegetable planting in northern China[J]. Agricultural Water Management, 2019, 213: 913-921. doi:10.1016/j.agwat.2018.12.015

39

CHENZ LUOX Q HUR G Impact of long-term fertilization on the composition of denitrifier communities based on nitrite reductase analyses in a paddy soilMicrobial Ecology201060850861

10.1007/s00248-010-9700-z

CHEN Z, LUO X Q, HU R G, et al. Impact of long-term fertilization on the composition of denitrifier communities based on nitrite reductase analyses in a paddy soil[J]. Microbial Ecology, 2010, 60: 850-861. doi:10.1007/s00248-010-9700-z

40

GOPALAKRISHNANS WATANABET PEARSES J Biological nitrification inhibition by Brachiaria humidicola roots varies with soil type and inhibits nitrifying bacteria, but not other major soil microorganismsSoil Science and Plant Nutrition2009555725733

10.1111/j.1747-0765.2009.00398.x

GOPALAKRISHNAN S, WATANABE T, PEARSE S J, et al. Biological nitrification inhibition by Brachiaria humidicola roots varies with soil type and inhibits nitrifying bacteria, but not other major soil microorganisms[J]. Soil Science and Plant Nutrition, 2009, 55(5): 725-733. doi:10.1111/j.1747-0765.2009.00398.x

41

ZHANGM FANC H LIQ L A 2-yr field assessment of the effects of chemical and biological nitrification inhibitors on nitrous oxide emissions and nitrogen use efficiency in an intensively managed vegetable cropping systemAgriculture, Ecosystems and Environment20152014350

10.1016/j.agee.2014.12.003

ZHANG M, FAN C H, LI Q L, et al. A 2-yr field assessment of the effects of chemical and biological nitrification inhibitors on nitrous oxide emissions and nitrogen use efficiency in an intensively managed vegetable cropping system[J]. Agriculture, Ecosystems and Environment, 2015, 201: 43-50. doi:10.1016/j.agee.2014.12.003

42

LIUC WANGK ZHENGX Effects of nitrification inhibitors (DCD and DMPP) on nitrous oxide emission, crop yield and nitrogen uptake in a wheat-maize cropping systemBiogeosciences201310424272437

10.5194/bg-10-2427-2013

LIU C, WANG K, ZHENG X. Effects of nitrification inhibitors (DCD and DMPP) on nitrous oxide emission, crop yield and nitrogen uptake in a wheat-maize cropping system[J]. Biogeosciences, 2013, 10(4): 2427-2437. doi:10.5194/bg-10-2427-2013

43

华瑶 陆玉芳 高维常 生物硝化抑制剂对黔西南黄壤硝化作用及N2O排放的影响土壤2023553512519

华瑶, 陆玉芳, 高维常, 等. 生物硝化抑制剂对黔西南黄壤硝化作用及N2O排放的影响[J]. 土壤, 2023, 55(3): 512-519.

44

ZULARISAMA W ISMAILA F SALIMM R The effects of natural organic matter (NOM) fractions on fouling characteristics and flux recovery of ultrafiltration membranesDesalination20072121/3191208

ZULARISAM A W, ISMAIL A F, SALIM M R, et al. The effects of natural organic matter (NOM) fractions on fouling characteristics and flux recovery of ultrafiltration membranes[J]. Desalination, 2007, 212(1/3): 191-208.

45

FILELLA M, PARTHASARATHY N, BUFFLE J. Humic and fulvic compounds[M]// Worsfold P, Townshend A, Poole C. Encyclopedia of analytical science. 2nd ed. Oxford: Elsevier, 2005: 288-298.

46

GUOX X LIUH T WUS B Humic substances developed during organic waste composting: formation mechanisms, structural properties, and agronomic functionsScience of the Total Environment2019662501510

10.1016/j.scitotenv.2019.01.137

GUO X X, LIU H T, WU S B. Humic substances developed during organic waste composting: formation mechanisms, structural properties, and agronomic functions[J]. Science of the Total Environment, 2019, 662: 501-510. doi:10.1016/j.scitotenv.2019.01.137

47

ABBAMONDIG R TOMMONAROG WEYENSN Plant growth-promoting effects of rhizospheric and endophytic bacteria associated with different tomato cultivars and new tomato hybridsChemical and Biological Technologies in Agriculture201631

10.1186/s40538-015-0051-3

ABBAMONDI G R, TOMMONARO G, WEYENS N, et al. Plant growth-promoting effects of rhizospheric and endophytic bacteria associated with different tomato cultivars and new tomato hybrids[J]. Chemical and Biological Technologies in Agriculture, 2016, 3: 1. doi:10.1186/s40538-015-0051-3

48

DELGADOA MADRIDA KASSEMS Phosphorus fertilizer recovery from calcareous soils amended with humic and fulvic acidsPlant and Soil2002245277286

10.1023/A:1020445710584

DELGADO A, MADRID A, KASSEM S, et al. Phosphorus fertilizer recovery from calcareous soils amended with humic and fulvic acids[J]. Plant and Soil, 2002, 245: 277-286. doi:10.1023/A:1020445710584

49

曾宪成 让腐植酸水溶肥普惠全人类——热烈庆祝联合国"世界环境日"暨"农业可持续发展论坛"胜利召开!腐植酸2014426

曾宪成. 让腐植酸水溶肥普惠全人类——热烈庆祝联合国"世界环境日"暨"农业可持续发展论坛"胜利召开![J]. 腐植酸, 2014(4): 2-6.

50

SUNTARIR RETNOWATIR SOEMARNOS Determination of urea-humic acid dosage of vertisols on the growth and production of riceAGRIVITA Journal of Agricultural Science2015372185192

SUNTARI R, RETNOWATI R, SOEMARNO S, et al. Determination of urea-humic acid dosage of vertisols on the growth and production of rice[J]. AGRIVITA Journal of Agricultural Science, 2015, 37(2): 185-192.

51

周丽平 袁亮 赵秉强 腐殖酸单侧刺激对玉米根系生长的影响中国农业科学2022552339349

周丽平, 袁亮, 赵秉强, 等. 腐殖酸单侧刺激对玉米根系生长的影响[J]. 中国农业科学, 2022, 55(2): 339-349.

52

张爽 丁芳 裴久勃 聚-γ-谷氨酸在农业中的应用及展望中国土壤与肥料202212218224

张爽, 丁芳, 裴久勃, 等. 聚-γ-谷氨酸在农业中的应用及展望[J]. 中国土壤与肥料, 2022(12): 218-224.

53

GARCÍA-MARTÍNEZA M DÍAZA TEJADAM Enzymatic production of an organic soil biostimulant from wheat-condensed distiller solubles: effects on soil biochemistry and biodiversityProcess Biochemistry201045711271133

10.1016/j.procbio.2010.04.005

GARCÍA-MARTÍNEZ A M, DÍAZ A, TEJADA M, et al. Enzymatic production of an organic soil biostimulant from wheat-condensed distiller solubles: effects on soil biochemistry and biodiversity[J]. Process Biochemistry, 2010, 45(7): 1127-1133. doi:10.1016/j.procbio.2010.04.005

54

HALPERNM BAR-TALA OFEKM Chater two - the use of biostimulants for enhancing nutrient uptakeAdvances in Agronomy2015130141174

HALPERN M, BAR-TAL A, OFEK M, et al. Chater two - the use of biostimulants for enhancing nutrient uptake[J]. Advances in Agronomy, 2015, 130: 141-174.

55

XUZ Q LEIP FENGX H Effect of poly (γ-glutamic acid) on microbial community and nitrogen pools of soilActa Agriculturae Scandinavica (Section B-Soil & Plant Science)2013638657668

XU Z Q, LEI P, FENG X H, et al. Effect of poly (γ-glutamic acid) on microbial community and nitrogen pools of soil[J]. Acta Agriculturae Scandinavica (Section B-Soil & Plant Science), 2013, 63(8): 657-668.

56

李华 胡丽娜 焦磊 γ-聚谷氨酸的研究进展微生物学免疫学进展20245218490

李华, 胡丽娜, 焦磊. γ-聚谷氨酸的研究进展[J]. 微生物学免疫学进展, 2024, 52(1): 84-90.

57

HASSOND BRAMSOND LIMONI-RELISB Influence of the flow system on the inhibitory action of CaCO3 scale prevention additivesDesalination19971081/36779

HASSON D, BRAMSON D, LIMONI-RELIS B, et al. Influence of the flow system on the inhibitory action of CaCO3 scale prevention additives[J]. Desalination, 1997, 108(1/3): 67-79.

58

杜中军 杨浩 王树昌 农用聚天门冬氨酸同源多肽研究进展热带作物学报2011321223812384

杜中军, 杨浩, 王树昌, 等. 农用聚天门冬氨酸同源多肽研究进展[J]. 热带作物学报, 2011, 32(12): 2381-2384.

59

许猛 袁亮 李伟 复合氨基酸肥料增效剂对NaCl胁迫下小白菜种子萌发和苗期生长的影响植物营养与肥料学报20182449921000

许猛, 袁亮, 李伟, 等. 复合氨基酸肥料增效剂对NaCl胁迫下小白菜种子萌发和苗期生长的影响[J]. 植物营养与肥料学报, 2018, 24(4): 992-1000.

60

董荣荣 刘玉梅 李树珍 根施5-氨基乙酰丙酸对早春茬日光温室黄瓜生长、产量及品质的影响中国农业大学学报20192484147

董荣荣, 刘玉梅, 李树珍, 等. 根施5-氨基乙酰丙酸对早春茬日光温室黄瓜生长、产量及品质的影响[J]. 中国农业大学学报, 2019, 24(8): 41-47.

61

周朋良, 谢荔. "5-氨基乙酰丙酸"多功能肥料——禾稼春[N]. 山东科技报, 2014-07-28(3).

62

任忠秀 聂立水 张强 含5-氨基乙酰丙酸等养分水溶肥料对月季生长、开花及体内养分元素含量的影响中国土壤与肥料201145964

任忠秀, 聂立水, 张强, 等. 含5-氨基乙酰丙酸等养分水溶肥料对月季生长、开花及体内养分元素含量的影响[J]. 中国土壤与肥料, 2011(4): 59-64.

63

SCHLATTERD KINKELL THOMASHOWL Disease suppressive soils: new insights from the soil microbiomePhytopathology20171071112841297

10.1094/PHYTO-03-17-0111-RVW

SCHLATTER D, KINKEL L, THOMASHOW L, et al. Disease suppressive soils: new insights from the soil microbiome[J]. Phytopathology, 2017, 107(11): 1284-1297. doi:10.1094/PHYTO-03-17-0111-RVW

64

周璇 沈欣 辛景树 我国微生物肥料行业发展状况中国土壤与肥料20206293298

周璇, 沈欣, 辛景树. 我国微生物肥料行业发展状况[J]. 中国土壤与肥料, 2020(6): 293-298.

65

BOROM SANNYASIS CHETTRID Microorganisms in biological control strategies to manage microbial plant pathogens: a reviewArchives of Microbiology2022204666

10.1007/s00203-022-03279-w

BORO M, SANNYASI S, CHETTRI D, et al. Microorganisms in biological control strategies to manage microbial plant pathogens: a review[J]. Archives of Microbiology, 2022, 204: 666. doi:10.1007/s00203-022-03279-w

66

ALORIE T BABALOLAO O Microbial inoculants for improving crop quality and human health in AfricaFrontiers in Microbiology201892213

10.3389/fmicb.2018.02213

ALORI E T, BABALOLA O O. Microbial inoculants for improving crop quality and human health in Africa[J]. Frontiers in Microbiology, 2018, 9: 2213. doi:10.3389/fmicb.2018.02213

67

MĄCIKM GRYTAA FRĄCM Chapter two - biofertilizers in agriculture: an overview on concepts, strategies and effects on soil microorganismsAdvances in Agronomy20201623187

MĄCIK M, GRYTA A, FRĄC M. Chapter two - biofertilizers in agriculture: an overview on concepts, strategies and effects on soil microorganisms[J]. Advances in Agronomy, 2020, 162: 31-87.

68

CHOUDHURYS R JOHNSS M PANDEYS A convenient, soil-free method for the production of root nodules in soybean to study the effects of exogenous additivesPlant Direct201934e00135

10.1002/pld3.135

CHOUDHURY S R, JOHNS S M, PANDEY S. A convenient, soil-free method for the production of root nodules in soybean to study the effects of exogenous additives[J]. Plant Direct, 2019, 3(4): e00135. doi:10.1002/pld3.135

69

CHENY H LIS S LIUN Effects of different types of microbial inoculants on available nitrogen and phosphorus, soil microbial community, and wheat growth in high-P soilEnvironmental Science and Pollution Research2021282303623047

10.1007/s11356-020-12203-y

CHEN Y H, LI S S, LIU N, et al. Effects of different types of microbial inoculants on available nitrogen and phosphorus, soil microbial community, and wheat growth in high-P soil[J]. Environmental Science and Pollution Research, 2021, 28: 23036-23047. doi:10.1007/s11356-020-12203-y

当前期刊数据统计
摘要浏览量: 0
PDF下载量: 0
被引用次数: 0
扫一扫关注
肥料与健康
微信公众号