Bio:
Email: liruhui@iae.ac.cn
李汝会(1995—),女,硕士,工程师,主要从事微生物肥料研究;liruhui@iae.ac.cn
通过中国知网(CNKI)数据库,以“肥料增效剂”“硝化抑制剂”“脲酶抑制剂”“腐殖质”“腐殖酸”“微生物肥料”“氨基酸肥料”等为关键词搜索发表于2000—2023年的文献,并将获得的8 805篇文献记录导入VOSviewer软件中进行关键词聚类分析。结果表明:肥料增效剂主要分为生物类和化学类两大类,其中化学类肥料增效剂主要为脲酶抑制剂类和硝化抑制剂类,生物类肥料增效剂主要为腐殖质类、氨基酸类、微生物类等。概述了生物类和化学类肥料增效剂的作用原理,提出了肥料增效剂在实际应用中存在的问题,并对今后肥料增效剂的创新方向提出了展望。
Through the China National Knowledge Infrastructure (CNKI) database, literature published from 2000 to 2023 is searched using keywords such as "fertilizer synergist", "nitrification inhibitor", "urease inhibitor", "humus", "humic acid", "microbial fertilizer", "amino acid fertilizer", etc. The obtained 8 805 literature records are imported into VOSviewer software for keyword cluster analysis. The results show that fertilizer synergists are mainly divided into two categories: biological and chemical. Between these two categories, chemical fertilizer synergists are mainly urease inhibitors and nitrification inhibitors, while biological fertilizer synergists are mainly humic substances, amino acids, microorganisms, etc. An overview of the working principles of biological and chemical fertilizer synergists is provided, the problems that exist in the practical application of fertilizer synergists are point out, and the innovative direction of fertilizer synergists in the future is proposed.
CUI Z L, WANG G L, YUE S C, et al. Closing the N-use efficiency gap to achieve food and environmental security[J]. Environmental Science & Technology, 2014, 48(10): 5780-5787.
AMON-ARMAH F, YIRIDOE E K, JAMIESON R, et al. Comparison of crop yield and pollution production response to nitrogen fertilization models, accounting for crop rotation effect[J]. Agroecology and Sustainable Food Systems, 2015, 39(3): 245-275. doi:10.1080/21683565.2014.967435
CHEN X X, WANG C Y, FU J J, et al. Research status and progress of inhibitory effects and inhibitory mechanism of complex-type urease inhibitors - a review[J]. Communications in Soil Science and Plant Analysis, 2019, 50(6): 772-781. doi:10.1080/00103624.2019.1579826
KRAJEWSKA B. Ureases Ⅰ. Functional, catalytic and kinetic properties: a review[J]. Journal of Molecular Catalysis B: Enzymatic, 2009, 59(1/3): 9-21.
YANG M, FANG Y T, SUN D, et al. Efficiency of two nitrification inhibitors (dicyandiamide and 3, 4-dimethypyrazole phosphate) on soil nitrogen transformations and plant productivity: a meta-analysis[J]. Scientific Reports, 2016, 6: 22075. doi:10.1038/srep22075
DOMÍNGUEZ M J, SANMARTÍN C, FONT M, et al. Design, synthesis, and biological evaluation of phosphoramide derivatives as urease inhibitors[J]. Journal of Agricultural and Food Chemistry, 2008, 56(10): 3721-3731. doi:10.1021/jf072901y
KOT M, ZABORSKA W, ORLINSKA K. Inhibition of jack bean urease by N-(n-butyl)thiophosphorictriamide and N-(n-butyl)phosphorictriamide: determination of the inhibition mechanism[J]. Journal of Enzyme Inhibition, 2001, 16(6): 507-516. doi:10.1080/14756360127569
BENINI S, CIURLI S, NOLTING H F, et al. X-ray absorption spectroscopy study of native and phenylphosphorodiamidate-inhibited Bacillus pasteurii urease[J]. European Journal of Biochemistry, 1996, 239(1): 61-66. doi:10.1111/j.1432-1033.1996.0061u.x
ARISTOTELI L P, O'ROURKE J L, DANON S, et al. Urea, fluorofamide, and omeprazole treatments alter Helicobacter colonization in the mouse gastric mucosa[J]. Helicobacter, 2006, 11(5): 460-468. doi:10.1111/j.1523-5378.2006.00439.x
GILL J S, BIJAY-SINGH, KHIND C S, et al. Efficiency of N-(n-butyl) thiophosphoric triamide in retarding hydrolysis of urea and ammonia volatilization losses in a flooded sandy loam soil amended with organic materials[J]. Nutrient Cycling in Agroecosystems, 1999, 53: 203-207. doi:10.1023/A:1009702707389
SANZ-COBENA A, MISSELBROOK T H, ARCE A, et al. An inhibitor of urease activity effectively reduces ammonia emissions from soil treated with urea under Mediterranean conditions[J]. Agriculture, Ecosystems and Environment, 2008, 126(3/4): 243-249.
SUBBARAO G V, SAHRAWAT K L, NAKAHARA K, et al. Chapter six - biological nitrification inhibition—a novel strategy to regulate nitrification in agricultural systems[J]. Advances in Agronomy, 2012, 114: 249-302.
SCHLESINGER W H. On the fate of anthropogenic nitrogen[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(1): 203-208.
LIU R, HU H W, SUTER H, et al. Nitrification is a primary driver of nitrous oxide production in laboratory microcosms from different land-use soils[J]. Frontiers in Microbiology, 2016(7): 1373.
GALLOWAY J N, TOWNSEND A R, ERISMAN J W, et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions[J]. Science, 2008, 320(5878): 889-892. doi:10.1126/science.1136674
WANG X, BAI J H, XIE T, et al. Effects of biological nitrification inhibitors on nitrogen use efficiency and greenhouse gas emissions in agricultural soils: a review[J]. Ecotoxicology and Environmental Safety, 2021, 220: 112338. doi:10.1016/j.ecoenv.2021.112338
HARTY M A, MCGEOUGH K L, CAROLAN R, et al. Gross nitrogen transformations in grassland soil react differently to urea stabilisers under laboratory and field conditions[J]. Soil Biology and Biochemistry, 2017, 109: 23-34. doi:10.1016/j.soilbio.2017.01.025
LIU S Y, CHI Q D, SHAN J, et al. Evaluation of the effectiveness of N process inhibitors in paddy rice via a 15N tracing approach[J]. Soil Biology and Biochemistry, 2020, 147: 107855. doi:10.1016/j.soilbio.2020.107855
TORRALBO F, MENÉNDEZ S, BARRENA I, et al. Dimethyl pyrazol-based nitrifcation inhibitors efect on nitrifying and denitrifying bacteria to mitigate N2O emission[J]. Scientific Reports, 2017, 7: 13810. doi:10.1038/s41598-017-14225-y
BYRNE M P, TOBIN J T, FORRESTAL P J, et al. Urease and nitrification inhibitors—as mitigation tools for greenhouse gas emissions in sustainable dairy systems: a review[J]. Sustainability, 2020, 12(15): 6018. doi:10.3390/su12156018
ZERULLA W, BARTH T, DRESSEL J, et al. 3, 4-Dimethylpyrazole phosphate (DMPP) - a new nitrification inhibitor for agriculture and horticulture[J]. Bioligy and Fertility of Soils, 2001, 34: 79-84. doi:10.1007/s003740100380
FU J J, WANG C Y, CHEN X X, et al. Classification research and types of slow controlled release fertilizers (SRFs) used - a review[J]. Communications in Soil Science and Plant Analysis, 2018, 49(17): 2219-2230. doi:10.1080/00103624.2018.1499757
SUBBARAO G V, ITO O, SAHRAWAT K L, et al. Scope and strategies for regulation of nitrification in agricultural systems—challenges and opportunities[J]. Critical Reviews in Plant Sciences, 2006, 25(4): 303-335. doi:10.1080/07352680600794232
HUÉRFANO X, FUERTES-MENDIZÁBAL T, FERNÁNDEZ-DIEZ K, et al. The new nitrification inhibitor 3, 4-dimethylpyrazole succinic (DMPSA) as an alternative to DMPP for reducing N2O emissions from wheat crops under humid Mediterranean conditions[J]. European Journal of Agronomy, 2016, 80: 78-87. doi:10.1016/j.eja.2016.07.001
ZACHERL B, AMBERGER A. Effect of the nitrification inhibitors dicyandiamide, nitrapyrin and thiourea on Nitrosomonas europaea[J]. Fertilizer Research, 1990, 22: 37-44. doi:10.1007/BF01054805
MCGEOUGH K L, WATSON C J, MVLLER C, et al. Evidence that the efficacy of the nitrification inhibitor dicyandiamide (DCD) is affected by soil properties in UK soils[J]. Soil Biology and Biochemistry, 2016, 94: 222-232. doi:10.1016/j.soilbio.2015.11.017
GILSANZ C, BÁEZ D, MISSELBROOK T H, et al. Development of emission factors and efficiency of two nitrification inhibitors, DCD and DMPP[J]. Agriculture, Ecosystems and Environment, 2016, 216: 1-8. doi:10.1016/j.agee.2015.09.030
WANG D Y, GUO L P, ZHENG L, et al. Effects of nitrogen fertilizer and water management practices on nitrogen leaching from a typical open field used for vegetable planting in northern China[J]. Agricultural Water Management, 2019, 213: 913-921. doi:10.1016/j.agwat.2018.12.015
CHEN Z, LUO X Q, HU R G, et al. Impact of long-term fertilization on the composition of denitrifier communities based on nitrite reductase analyses in a paddy soil[J]. Microbial Ecology, 2010, 60: 850-861. doi:10.1007/s00248-010-9700-z
GOPALAKRISHNAN S, WATANABE T, PEARSE S J, et al. Biological nitrification inhibition by Brachiaria humidicola roots varies with soil type and inhibits nitrifying bacteria, but not other major soil microorganisms[J]. Soil Science and Plant Nutrition, 2009, 55(5): 725-733. doi:10.1111/j.1747-0765.2009.00398.x
ZHANG M, FAN C H, LI Q L, et al. A 2-yr field assessment of the effects of chemical and biological nitrification inhibitors on nitrous oxide emissions and nitrogen use efficiency in an intensively managed vegetable cropping system[J]. Agriculture, Ecosystems and Environment, 2015, 201: 43-50. doi:10.1016/j.agee.2014.12.003
LIU C, WANG K, ZHENG X. Effects of nitrification inhibitors (DCD and DMPP) on nitrous oxide emission, crop yield and nitrogen uptake in a wheat-maize cropping system[J]. Biogeosciences, 2013, 10(4): 2427-2437. doi:10.5194/bg-10-2427-2013
ZULARISAM A W, ISMAIL A F, SALIM M R, et al. The effects of natural organic matter (NOM) fractions on fouling characteristics and flux recovery of ultrafiltration membranes[J]. Desalination, 2007, 212(1/3): 191-208.
GUO X X, LIU H T, WU S B. Humic substances developed during organic waste composting: formation mechanisms, structural properties, and agronomic functions[J]. Science of the Total Environment, 2019, 662: 501-510. doi:10.1016/j.scitotenv.2019.01.137
ABBAMONDI G R, TOMMONARO G, WEYENS N, et al. Plant growth-promoting effects of rhizospheric and endophytic bacteria associated with different tomato cultivars and new tomato hybrids[J]. Chemical and Biological Technologies in Agriculture, 2016, 3: 1. doi:10.1186/s40538-015-0051-3
DELGADO A, MADRID A, KASSEM S, et al. Phosphorus fertilizer recovery from calcareous soils amended with humic and fulvic acids[J]. Plant and Soil, 2002, 245: 277-286. doi:10.1023/A:1020445710584
SUNTARI R, RETNOWATI R, SOEMARNO S, et al. Determination of urea-humic acid dosage of vertisols on the growth and production of rice[J]. AGRIVITA Journal of Agricultural Science, 2015, 37(2): 185-192.
GARCÍA-MARTÍNEZ A M, DÍAZ A, TEJADA M, et al. Enzymatic production of an organic soil biostimulant from wheat-condensed distiller solubles: effects on soil biochemistry and biodiversity[J]. Process Biochemistry, 2010, 45(7): 1127-1133. doi:10.1016/j.procbio.2010.04.005
HALPERN M, BAR-TAL A, OFEK M, et al. Chater two - the use of biostimulants for enhancing nutrient uptake[J]. Advances in Agronomy, 2015, 130: 141-174.
XU Z Q, LEI P, FENG X H, et al. Effect of poly (γ-glutamic acid) on microbial community and nitrogen pools of soil[J]. Acta Agriculturae Scandinavica (Section B-Soil & Plant Science), 2013, 63(8): 657-668.
HASSON D, BRAMSON D, LIMONI-RELIS B, et al. Influence of the flow system on the inhibitory action of CaCO3 scale prevention additives[J]. Desalination, 1997, 108(1/3): 67-79.
SCHLATTER D, KINKEL L, THOMASHOW L, et al. Disease suppressive soils: new insights from the soil microbiome[J]. Phytopathology, 2017, 107(11): 1284-1297. doi:10.1094/PHYTO-03-17-0111-RVW
BORO M, SANNYASI S, CHETTRI D, et al. Microorganisms in biological control strategies to manage microbial plant pathogens: a review[J]. Archives of Microbiology, 2022, 204: 666. doi:10.1007/s00203-022-03279-w
ALORI E T, BABALOLA O O. Microbial inoculants for improving crop quality and human health in Africa[J]. Frontiers in Microbiology, 2018, 9: 2213. doi:10.3389/fmicb.2018.02213
MĄCIK M, GRYTA A, FRĄC M. Chapter two - biofertilizers in agriculture: an overview on concepts, strategies and effects on soil microorganisms[J]. Advances in Agronomy, 2020, 162: 31-87.
CHOUDHURY S R, JOHNS S M, PANDEY S. A convenient, soil-free method for the production of root nodules in soybean to study the effects of exogenous additives[J]. Plant Direct, 2019, 3(4): e00135. doi:10.1002/pld3.135