水体环境重金属检测传感信号基线校正算法的开发与应用 - 202404 - 肥料与健康
水体环境重金属检测传感信号基线校正算法的开发与应用
Development and Application of Baseline Correction Algorithm for Heavy Metal Detection Sensing Signals in Water Environment
doi: 10.3969/j.issn.2096-7047.2024.04.011
, ,
摘要:

水体重金属污染会对人体健康和生态环境造成危害,实现水体中重金属含量的快速检测是消除重金属危害的关键环节之一。基于现有检测设备在水体重金属检测过程中存在传感信号基线漂移影响分析精度的问题,以及非对称重加权惩罚最小二乘(arPLS)算法存在无法满足基线高精度估计的缺陷,提出了一种双循环平滑参数自适应选择的基线校正(DC-arPLS)算法。DC-arPLS算法对于仿真信号基线拟合的均方根误差为3.44×10-8,优于arPLS算法的4.86×10-8。实际信号基线校正应用结果表明:DC-arPLS算法用于真实光/电信号的基线校正,能满足高精度基线校正的要求,可对水体环境的保护提供一定的技术支持。

关键词:
Abstract:

Heavy metal pollution in water can pose threats to human health and the ecological environment. Rapid detection of heavy metal content in water is one of the key steps in eliminating heavy metal hazards. Based on the problem of baseline drift of sensing signals affecting the accuracy of analysis in heavy metal detection in water using existing detection equipment, and the limitation of the asymmetrically reweighted penalized least squares (arPLS) algorithm that cannot meet high-precision baseline estimation, a dual cycle smooth parameter adaptive selection baseline correction (DC-arPLS) algorithm is proposed. The root mean square error of DC-arPLS algorithm for simulating signal baseline fitting is 3.44×10-8, which is better than arPLS′s algorithm 4.86×10-8. The application results of actual signal baseline correction show that DC-arPLS algorithm for baseline correction of real optical/electrical signals can meet the requirements of high-precision baseline correction and provide certain technical support for the protection of water environmental.

Keyword:
ckwx 参考文献

1

黄文建 陈芳 么强 地下水污染现状及其修复技术研究进展水处理技术20214771218

黄文建, 陈芳, 么强, 等. 地下水污染现状及其修复技术研究进展[J]. 水处理技术, 2021, 47(7): 12-18.

2

李晓曼 李青青 杨洁 上海市典型工业用地土壤和地下水重金属复合污染特征及生态风险评价环境科学2022431256875697

10.3969/j.issn.1000-6923.2022.12.026

李晓曼, 李青青, 杨洁, 等. 上海市典型工业用地土壤和地下水重金属复合污染特征及生态风险评价[J]. 环境科学, 2022, 43(12): 5687-5697. doi:10.3969/j.issn.1000-6923.2022.12.026

3

姚德俊 岳昌盛 吕建国 我国工业场地污染地下水修复技术研究进展现代化工202040124549

姚德俊, 岳昌盛, 吕建国, 等. 我国工业场地污染地下水修复技术研究进展[J]. 现代化工, 2020, 40(12): 45-49.

4

黄芸 袁洪 黄志军 环境重金属暴露对人群健康危害研究进展中国公共卫生201632811131116

黄芸, 袁洪, 黄志军, 等. 环境重金属暴露对人群健康危害研究进展[J]. 中国公共卫生, 2016, 32(8): 1113-1116.

5

江晓宇 李福生 王清亚 基于惩罚最小二乘算法的土壤重金属检测光谱基线校正农业机械学报2021528205212

江晓宇, 李福生, 王清亚, 等. 基于惩罚最小二乘算法的土壤重金属检测光谱基线校正[J]. 农业机械学报, 2021, 52(8): 205-212.

6

宁志强 刘家祥 吴越 基于改进迭代多项式拟合的红外光谱基线校正方法激光与光电子学进展2020573255261

宁志强, 刘家祥, 吴越, 等. 基于改进迭代多项式拟合的红外光谱基线校正方法[J]. 激光与光电子学进展, 2020, 57(3): 255-261.

7

孙毅 杜振辉 尹新 近红外光谱气体在线分析中基线校正方法的研究光谱学与光谱分析20081022822284

10.3964/j.issn.1000-0593(2008)10-2282-03

孙毅, 杜振辉, 尹新, 等. 近红外光谱气体在线分析中基线校正方法的研究[J]. 光谱学与光谱分析, 2008(10): 2282-2284. doi:10.3964/j.issn.1000-0593(2008)10-2282-03

8

田超凡 李剑君 翁国军 改进的局部最值分段多项式拟合算法精确校正拉曼光谱基线光谱学与光谱分析202444410731080

田超凡, 李剑君, 翁国军, 等. 改进的局部最值分段多项式拟合算法精确校正拉曼光谱基线[J]. 光谱学与光谱分析, 2024, 44(4): 1073-1080.

9

罗勇 于佳佳 周旭 基于小波变换的质谱基线校正算法研究真空科学与技术学报2023431210641071

罗勇, 于佳佳, 周旭, 等. 基于小波变换的质谱基线校正算法研究[J]. 真空科学与技术学报, 2023, 43(12): 1064-1071.

10

BAEKS J PARKA AHNY J Baseline correction using asymmetrically reweighted penalized least squares smoothingAnalyst20151401250257

10.1039/C4AN01061B

BAEK S J, PARK A, AHN Y J, et al. Baseline correction using asymmetrically reweighted penalized least squares smoothing[J]. Analyst, 2015, 140(1): 250-257. doi:10.1039/C4AN01061B

11

GÓRSKIŁ CIEPIELAF JAKUBOWSKAM Automatic baseline correction in voltammetryElectrochimica Acta2014136195203

10.1016/j.electacta.2014.05.076

GÓRSKI Ł, CIEPIELA F, JAKUBOWSKA M. Automatic baseline correction in voltammetry[J]. Electrochimica Acta, 2014, 136: 195-203. doi:10.1016/j.electacta.2014.05.076

12

LIUH ZHANGZ LIUS Y Joint baseline-correction and denoising for Raman spectraApply Spectrosc201569910131022

10.1366/14-07760

LIU H, ZHANG Z, LIU S Y, et al. Joint baseline-correction and denoising for Raman spectra[J]. Apply Spectrosc, 2015, 69(9): 1013-1022. doi:10.1366/14-07760

13

WANGY Q WANGS Y LAIK K Measuring financial risk with generalized asymmetric least squares regressionApplied Soft Computing201111857935800

10.1016/j.asoc.2011.02.018

WANG Y Q, WANG S Y, LAI K K. Measuring financial risk with generalized asymmetric least squares regression[J]. Applied Soft Computing, 2011, 11(8): 5793-5800. doi:10.1016/j.asoc.2011.02.018

14

YANGG F DAIJ C LIUX J Multiple constrained reweighted penalized least squares for spectral baseline correctionApplied Spectroscopy2020741214431451

10.1177/0003702819885002

YANG G F, DAI J C, LIU X J, et al. Multiple constrained reweighted penalized least squares for spectral baseline correction[J]. Applied Spectroscopy, 2020, 74(12): 1443-1451. doi:10.1177/0003702819885002

15

ZHANGF TANGX J TONGA X Baseline correction for infrared spectra using adaptive smoothness parameter penalized least squares methodSpectroscopy Letters2020533222233

10.1080/00387010.2020.1730908

ZHANG F, TANG X J, TONG A X, et al. Baseline correction for infrared spectra using adaptive smoothness parameter penalized least squares method[J]. Spectroscopy Letters, 2020, 53(3): 222-233. doi:10.1080/00387010.2020.1730908

当前期刊数据统计
摘要浏览量: 0
PDF下载量: 0
被引用次数: 0
扫一扫关注
肥料与健康
微信公众号