Bio:
Email: mjc@ghs.cn
莫俊超(1986—),男,硕士,高级工程师,研究方向为化学物质环境安全评价和环境系统模型;mjc@ghs.cn
四级多介质模型的敏感性分析是生态毒理学的重要研究方法之一。为了系统性研究该分析方法,选用Morris法和Sobol法对两种农业常用药剂(抗生素磺胺甲嘧啶和四环素)进行研究,并对10种影响参数的敏感性进行了分析。结果表明:不同物质的参数敏感性有差异;Morris法可得到定性结果,Sobol法可得到定量结果,但两者参数排序结果相近;Morris法对计算资源需求更少,计算耗时短,结果输出快,而Sobol法需优化计算次数,计算过程相对复杂。目前多数的研究采用局部敏感性分析方法,但可能会造成结果的不准确性。在无法判断模型是否为线性时,应优先使用全局敏感性分析方法。
Sensitivity analysis of the four level multimedia model is one of the important research methods in ecotoxicology. In order to systematically study this analysis method, Morris method and Sobol method are used to study two commonly used agricultural pesticides (antibiotics sulfamethoxazole and tetracycline), and the sensitivity of 10 influencing parameters is analyzed. The results indicate that there are differences in the sensitivity of parameters for different substances. The Morris method can obtain qualitative results, while the Sobol method can obtain quantitative results, but the parameter ranking results of the two methods are similar. The Morris method requires less computing resources, has shorter computation time, and produces faster results. The Sobol method requires optimization of the number of calculations, and the calculation process is relatively complex. Currently, most studies use local sensitivity analysis methods, but may result in inaccurate results. When it is impossible to determine whether the model is linear, global sensitivity analysis methods should be prioritized.
MACKAY D. Finding fugacity feasible[J]. Environmental Science and Technology, 1979, 13: 1218-1223. doi:10.1021/es60158a003
PARNIS M, MACKAY D. Multimedia environmental models: the fugacity approach[M]. 3rd ed. Boca Raton: CRC Press, 2021.
GARICA D, AROSTEGUI I, PRELLEZO R. Robust combination of the Morris and Sobol methods in complex multidimensional models[J]. Environmental Modelling and Software, 2019, 122: 104517. doi:10.1016/j.envsoft.2019.104517
QIAN G, MAHDI A. Sensitivity analysis methods in the biomedical sciences[J]. Mathematical Biosciences, 2020, 323: 108306. doi:10.1016/j.mbs.2020.108306
ZHU Y, PRICE O R, TAO S, et al. A new multimedia contaminant fate model for China: how important are environmental parameters in influencing chemical persistence and long-range transport potential?[J]. Environment International, 2014, 69: 18-27. doi:10.1016/j.envint.2014.03.020
KONG X Z, HE W, QIN N, et al. Modeling the multimedia fate dynamics of γ-hexachlorocyclohexane in a large Chinese lake[J]. Ecological Indicators, 2014, 41: 65-74. doi:10.1016/j.ecolind.2014.01.024
CIFFROY P, ALFONSO B, ALTENPOHL A, et al. Modelling the exposure to chemicals for risk assessment: a comprehensive library of multimedia and PBPK models for integration, prediction, uncertainty and sensitivity analysis - the MERLIN-Expo tool[J]. Science of the Total Environment, 2016, 568: 770-784. doi:10.1016/j.scitotenv.2016.03.191
KONG X Z, LIU W X, HE W, et al. Multimedia fate modeling of perfluorooctanoic acid (PFOA) and perfluorooctane sulphonate (PFOS) in the shallow lake Chaohu, China[J]. Environmental Pollution, 2018, 237: 339-347. doi:10.1016/j.envpol.2018.02.026
DONG J X, CHEN Z, WANG Q Y, et al. A regional spatial environmental multimedia modeling (RSEMM) approach for assessing the risk of antibiotics in river basin system - a China case study[J]. Sustainable Cities and Society, 2019, 50: 101624. doi:10.1016/j.scs.2019.101624
任幸, 于洋, 夏博, 等. 多介质环境模型New Equilibrium Criterion (New EQC)参数敏感性分析[J]. 环境化学, 2019, 38(6): 1241-1250.
莫俊超, 姚洪伟, 吴孝槐, 等. 顶空被动加标系统的多介质动力学模型[J]. 中国环境科学, 2021, 41(11): 5353-5360. doi:10.3969/j.issn.1000-6923.2021.11.044
TERZAGHI E, MORSELLI M, SEMPLICE M, et al. SoilPlusVeg: an integrated air-plant-litter-soil model to predict organic chemical fate and recycling in forests[J]. Science of the Total Environment, 2017, 595: 169-177. doi:10.1016/j.scitotenv.2017.03.252
中华人民共和国国务院办公厅. 新污染物治理行动方案[EB/OL]. (2022-05-04)[2024-08-04]. https://www.gov.cn/gongbao/content/2022/content_5695042.htm.
颜小曼, 陈磊, 郭晨茜, 等. 农药非点源模拟研究进展: 流失、传输及归趋[J]. 农业环境科学学报, 2022, 41(11): 2338-2351. doi:10.11654/jaes.2022-0801
中华人民共和国生态环境部. 化学物质环境与健康暴露评估技术导则(试行)[EB/OL]. (2020-12-24)[2024-08-04]. http://www.mee.gov.cn/xxgk2018/xxgk/xxgk01/202012/W020201225515745341837.pdf.
莫俊超, 吴孝槐, 舒耀皋. Julia和R软件在多介质动力学模型建模中的比较[J]. 化工环保, 2021, 41(4): 494-499. doi:10.3969/j.issn.1006-1878.2021.04.015
YALKOWSKY S H, YAN H, JAIN P. Handbook of aqueous solubility data[M]. 2nd ed. Boca Raton: CRC Press, 2010.
USEPA. Download EPI SuiteTM - Estimation Program Interface v4.11[CP/OL]. (2024-06-11)[2024-08-04]. https://www.epa.gov/tsca-screening-tools/download-epi-suitetm-estimation-program-interface-v411.
JIA J, GUAN Y J, CHENG M Q, et al. Occurrence and distribution of antibiotics and antibiotic resistance genes in Ba River, China[J]. Science of the Total Environment, 2018, 642: 1136-1144. doi:10.1016/j.scitotenv.2018.06.149
SARRAZIN F, PIANOSI F, WAGENER T. Global sensitivity analysis of environmental models: convergence and validation[J]. Environmental Modeling and Software, 2016, 79: 135-152.
WAINWRIGHT H M, FINSTERLE S, JUNG Y, et al. Making sense of global sensitivity analyses[J]. Computers and Geosciences, 2014, 65: 84-94.
NABI S, AHANGER M A, DAR A Q. Investigating the potential of Morris algorithm for improving the computational constraints of global sensitivity analysis[J]. Environmental Science and Pollution Research, 2021, 28: 60900-60912.
NICOULAUD-GOUIN V, MOURLON C, TANAKA T, et al. Sensitivity analysis in a radiological impact assessment of a nuclear power plant discharge. A comparison of the Morris, Spearman and Sobol' approaches[J]. Journal of Environmental Radioactivity, 2022, 242: 106770.
SALTELLI A, ALEKSANKINA K, BECKER W, et al. Why so many published sensitivity analyses are false: a systematic review of sensitivity analysis practices[J]. Environmental Modelling and Software, 2019, 114: 29-39.
浙江省生态环境保护标准化技术委员会. 建设用地土壤污染风险评估技术导则: DB33/T 892—2022[S/OL]. (2022-12-19)[2024-08-04]. https://dbba.sacinfo.org.cn/attachment/downloadStdFile?pk=0182c4240c5c8602c87d5fd5f4dcce25b82be2b2bb8a3926ffeb9da773aa83db.