聚乳酸共混膜及其包膜肥料的性能研究 - 202504 - 肥料与健康
聚乳酸共混膜及其包膜肥料的性能研究
Study on the Properties of Polylactic Acid Blended Films and Their Coated Fertilizers
doi: 10.3969/j.issn.2096-7047.2025.04.011
, , , , ,
摘要:

针对相对分子质量较低的聚乳酸(LPLA)韧性差,在包膜肥料生产过程中容易出现空洞和裂缝,造成包膜肥料养分释放期缩短的问题,开展了在LPLA中添加质量分数为0、10%、20%、30%、40%的相对分子质量较高的聚乳酸(HPLA)制取共混膜(LPLA100、LPLA90、LPLA80、LPLA70、LPLA60)的试验,分别对理想成膜条件下得到的理想共混膜和在改进的Wurster流化床中制得的工艺共混膜包膜尿素进行表征。结果表明:添加HPLA后,理想共混膜的韧性增强,结晶度下降,水蒸气和氮元素渗透率增大;理想共混膜LPLA70包膜尿素的养分释放周期比理想共混膜LPLA90、LPLA80、LPLA60包膜尿素的长;在改进的Wurster流化床中制取的工艺共混膜LPLA70包膜尿素的养分释放周期最长,工艺完整度最高。在LPLA中添加30%的HPLA,可以提高共混膜的韧性,包膜肥料生产工艺对膜的影响最小。

关键词:
Abstract:

In view of the poor toughness of low molecular weight polylactic acid (LPLA), which tends to form cavities and cracks during the production process of coated fertilizers, resulting in a shortened nutrient release period of coated fertilizers, experiments are conducted to prepare blended films (LPLA100, LPLA90, LPLA80, LPLA70, LPLA60) by adding high molecular weight polylactic acid (HPLA) with mass fractions of 0, 10%, 20%, 30%, and 40% to LPLA. The ideal blended films obtained under ideal film-forming conditions and the process blended films coated urea prepared in an improved Wurster fluidized bed are characterized, respectively. The results show that the addition of HPLA enhances the toughness of the ideal blended films, decreases the crystallinity, and increases the water vapor and nitrogen permeability. The nutrient release period of the ideal blended film LPLA70 coated urea is longer than that of the ideal blended films LPLA90, LPLA80, and LPLA60 coated urea. The process blended film LPLA70 coated urea prepared in the improved Wurster fluidized bed has the longest nutrient release period, and the highest coating integrity. Adding 30% HPLA to LPLA can improve the toughness of the blended films, and the production process of coated fertilizers has the minimal impact on the films.

Keyword:
ckwx 参考文献

1

PALAMANITA PRACHAYAWARAKORNS TUNGTRAKULP Performance evaluation of top-spray fluidized bed coating for healthy coated rice productionFood and Bioprocess Technology2016913171326

10.1007/s11947-016-1720-3

PALAMANIT A, PRACHAYAWARAKORN S, TUNGTRAKUL P, et al. Performance evaluation of top-spray fluidized bed coating for healthy coated rice production[J]. Food and Bioprocess Technology, 2016, 9: 1317-1326. doi:10.1007/s11947-016-1720-3

2

SONGY Q ZHOUT BAIR Q Assessment of the coating quality in a top-spray fluidized bed coater: an experimental studyPowder Technology2024439119663

10.1016/j.powtec.2024.119663

SONG Y Q, ZHOU T, BAI R Q, et al. Assessment of the coating quality in a top-spray fluidized bed coater: an experimental study[J]. Powder Technology, 2024, 439: 119663. doi:10.1016/j.powtec.2024.119663

3

SEYEDINS H ZHALEHRAJABIE ARDJMANDM Using response surface methodology to optimize the operating parameters in a top-spray fluidized bed coating systemSurface and Coatings Technology20183344349

10.1016/j.surfcoat.2017.11.003

SEYEDIN S H, ZHALEHRAJABI E, ARDJMAND M, et al. Using response surface methodology to optimize the operating parameters in a top-spray fluidized bed coating system[J]. Surface and Coatings Technology, 2018, 334: 43-49. doi:10.1016/j.surfcoat.2017.11.003

4

LIUD Y GUOJ N MAJ L Effects of seed particle properties on coating in a wurster fluidized bedIndustrial and Engineering Chemistry Research202362381568715698

10.1021/acs.iecr.3c02662

LIU D Y, GUO J N, MA J L, et al. Effects of seed particle properties on coating in a wurster fluidized bed[J]. Industrial and Engineering Chemistry Research, 2023, 62(38): 15687-15698. doi:10.1021/acs.iecr.3c02662

5

YANGZ S SONGH Y YANGK M The physicochemical properties and the release of sodium caseinate/polysaccharide gum chlorophyll multiple-layer particles by rotary side-spray fluid bed technologyFood Chemistry2022394133442

10.1016/j.foodchem.2022.133442

YANG Z S, SONG H Y, YANG K M, et al. The physicochemical properties and the release of sodium caseinate/polysaccharide gum chlorophyll multiple-layer particles by rotary side-spray fluid bed technology[J]. Food Chemistry, 2022, 394: 133442. doi:10.1016/j.foodchem.2022.133442

6

FANW H DINGY J XIAOZ L A brand new green coating technology for realizing the regulation of spherical propellant energy release processDefence Technology2024367894

FAN W H, DING Y J, XIAO Z L. A brand new green coating technology for realizing the regulation of spherical propellant energy release process[J]. Defence Technology, 2024, 36: 78-94.

7

YUANS G ZHOUT TANZ X New straw coating material for improving the slow-release performance of fertilizersACS Applied Materials and Interfaces202315333981839826

10.1021/acsami.3c06408

YUAN S G, ZHOU T, TAN Z X. New straw coating material for improving the slow-release performance of fertilizers[J]. ACS Applied Materials and Interfaces, 2023, 15(33): 39818-39826. doi:10.1021/acsami.3c06408

8

SAIRS ABOULHROUZS AMADINEO Bio-based alkyd urethane formulations: advancing sustainable agriculture and environmental protection through slow-controlled release of NPK fertilizersEuropean Polymer Journal2023199112477

10.1016/j.eurpolymj.2023.112477

SAIR S, ABOULHROUZ S, AMADINE O, et al. Bio-based alkyd urethane formulations: advancing sustainable agriculture and environmental protection through slow-controlled release of NPK fertilizers[J]. European Polymer Journal, 2023, 199: 112477. doi:10.1016/j.eurpolymj.2023.112477

9

LIANGD S SHIH B LUQ M Controlled-release fertilizers with an ultralow coating contentJournal of Materials Chemistry A202311945274538

10.1039/D2TA08807J

LIANG D S, SHI H B, LU Q M, et al. Controlled-release fertilizers with an ultralow coating content[J]. Journal of Materials Chemistry A, 2023, 11(9): 4527-4538. doi:10.1039/D2TA08807J

10

EL-TAWEELS H AL-HAMDIA Starch as a successful biodegradable nucleating agent in biodegradable PHBV/PHO blendsJournal of Thermal Analysis and Calorimetry202414913511364

10.1007/s10973-023-12791-0

EL-TAWEEL S H, AL-HAMDI A. Starch as a successful biodegradable nucleating agent in biodegradable PHBV/PHO blends[J]. Journal of Thermal Analysis and Calorimetry, 2024, 149: 1351-1364. doi:10.1007/s10973-023-12791-0

11

IRFANS A RAZALIR KUSHAARIK Reaction-multi diffusion model for nutrient release and autocatalytic degradation of PLA-coated controlled-release fertilizerPolymers201793111

10.3390/polym9030111

IRFAN S A, RAZALI R, KUSHAARI K, et al. Reaction-multi diffusion model for nutrient release and autocatalytic degradation of PLA-coated controlled-release fertilizer[J]. Polymers, 2017, 9(3): 111. doi:10.3390/polym9030111

12

TAOY XIAX S LUOZ Preparation of modified polylactic acid melt coated urea material and its green coating techniqueProgress in Organic Coatings2022173107214

10.1016/j.porgcoat.2022.107214

TAO Y, XIA X S, LUO Z, et al. Preparation of modified polylactic acid melt coated urea material and its green coating technique[J]. Progress in Organic Coatings, 2022, 173: 107214. doi:10.1016/j.porgcoat.2022.107214

13

邓小楠. 环保型薄膜材料及包膜肥料制备与释放性能研究[D]. 合肥: 合肥工业大学, 2019.

14

MENDESC MEIRELLESG C SILVAM A S Intestinal permeability determinants of norfloxacin in Ussing chamber modelEuropean Journal of Pharmaceutical Sciences2018121236242

10.1016/j.ejps.2018.05.030

MENDES C, MEIRELLES G C, SILVA M A S, et al. Intestinal permeability determinants of norfloxacin in Ussing chamber model[J]. European Journal of Pharmaceutical Sciences, 2018, 121: 236-242. doi:10.1016/j.ejps.2018.05.030

当前期刊数据统计
摘要浏览量: 0
PDF下载量: 0
被引用次数: 0
扫一扫关注
肥料与健康
微信公众号