甘氨酸在作物栽培中的应用机理和潜力探讨 - 202505 - 肥料与健康
甘氨酸在作物栽培中的应用机理和潜力探讨
Exploration of the Application Mechanism and Potential of Glycine in Crop Cultivation
doi: 10.3969/j.issn.2096-7047.2025.05.002
, , , , ,
摘要:

近年来,甘氨酸在作物栽培中的生理调控作用备受关注。综述了甘氨酸在植物生长发育、抗逆性、营养代谢、抗氧化能力及氮素吸收利用等方面的调控机制,并探讨了其在绿色农业中的应用潜力。研究表明:甘氨酸通过促进根系发育、提高光合效率、激活抗氧化系统及优化氮代谢途径等方式,可以提升作物的产量与品质;具有缓解低温、干旱及重金属胁迫的作用,为逆境农业提供了新策略;可作为有机氮源直接被植物吸收,减少了对化肥的依赖,展现出环境友好的特性。今后开发含甘氨酸的复合肥或功能叶面肥,优化肥料的施用浓度及田间稳定性,并评估其在大规模农业生产中的经济性和环境效益,将有助于推动甘氨酸在绿色农业中的规模化应用。

关键词:
Abstract:

In recent years, the physiological regulatory roles of glycine in crop cultivation have attracted significant attention. The regulatory mechanisms of glycine in plant growth and development, stress resistance, nutrient metabolism, antioxidant capacity, and nitrogen absorption and utilization are summarized, while exploring its potential applications in green agriculture. Research indicates that glycine enhances crop yield and quality by promoting root development, improving photosynthetic efficiency, activating the antioxidant system, and optimizing nitrogen metabolism pathways. It demonstrates efficacy in alleviating low temperature, drought, and heavy metal stress, offering new strategies for adversity agriculture. Furthermore, glycine can be directly absorbed by plants as an organic nitrogen source, reducing dependence on chemical fertilizers and exhibiting environmentally friendly characteristics. Future development of compound fertilizers or functional foliar fertilizers containing glycine, optimization of application concentration and field stability, and evaluation of its economic viability and environmental benefits in large-scale agricultural production will facilitate the widespread application of glycine in green agriculture.

Keyword:
ckwx 参考文献

1

孙弘 刘合刚 崔谨谨 外源甘氨酸对镉胁迫下苜蓿幼苗生长和氧化损伤的影响中国生态农业学报201018510221025

孙弘, 刘合刚, 崔谨谨, 等. 外源甘氨酸对镉胁迫下苜蓿幼苗生长和氧化损伤的影响[J]. 中国生态农业学报, 2010, 18(5): 1022-1025.

2

徐泽辉 刁春霞 黄亚茹 甘氨酸的生产现状及发展趋势石油化工技术经济20042054145

徐泽辉, 刁春霞, 黄亚茹, 等. 甘氨酸的生产现状及发展趋势[J]. 石油化工技术经济, 2004, 20(5): 41-45.

3

高秀瑞 陈贵林 甘氨酸部分替代硝态氮对不结球白菜和生菜生长及硝酸盐积累的影响河北农业大学学报200314043

高秀瑞, 陈贵林. 甘氨酸部分替代硝态氮对不结球白菜和生菜生长及硝酸盐积累的影响[J]. 河北农业大学学报, 2003(1): 40-43.

4

YANGN WANGC L HEW P Photosynthetic characteristics and effects of exogenous glycine of Chorispora bungeana under drought stressPhotosynthetica2016543459467

10.1007/s11099-016-0187-9

YANG N, WANG C L, HE W P, et al. Photosynthetic characteristics and effects of exogenous glycine of Chorispora bungeana under drought stress[J]. Photosynthetica, 2016, 54(3): 459-467. doi:10.1007/s11099-016-0187-9

5

王文颖 殷恒霞 徐进 甘氨酸预处理对中华羊茅热胁迫下幼苗生长和氧化损伤的影响兰州大学学报(自然科学版)20124817578

王文颖, 殷恒霞, 徐进, 等. 甘氨酸预处理对中华羊茅热胁迫下幼苗生长和氧化损伤的影响[J]. 兰州大学学报(自然科学版), 2012, 48(1): 75-78.

6

葛体达 宋世威 姜武 不同甘氨酸浓度对无菌水培番茄幼苗生长和氮代谢的影响生态学报200929419942002

葛体达, 宋世威, 姜武, 等. 不同甘氨酸浓度对无菌水培番茄幼苗生长和氮代谢的影响[J]. 生态学报, 2009, 29(4): 1994-2002.

7

曹小闯 吴良欢 陈贤友 氨基酸部分替代硝态氮对小白菜产量、品质及根际分泌物的影响植物营养与肥料学报2012183699705

曹小闯, 吴良欢, 陈贤友, 等. 氨基酸部分替代硝态氮对小白菜产量、品质及根际分泌物的影响[J]. 植物营养与肥料学报, 2012, 18(3): 699-705.

8

牛娟娟 方淑梅 王庆燕 不同浓度甘氨酸拌土对水稻秧苗生长特性的影响中国稻米20243044752

牛娟娟, 方淑梅, 王庆燕, 等. 不同浓度甘氨酸拌土对水稻秧苗生长特性的影响[J]. 中国稻米, 2024, 30(4): 47-52.

9

刘嘉琪. 氨基酸对西瓜幼苗生长发育及其生理特性的影响[D]. 杭州: 浙江大学, 2023.

10

毕思琦. 甘氨酸处理对平邑甜茶幼苗生长的影响[D]. 泰安: 山东农业大学, 2020.

11

杨晓. 甘氨酸促进叶用莴苣(Lactuca sativa L.)酚类化合物积累的代谢组学分析[D]. 上海: 上海交通大学, 2019.

12

周倩. 甘氨酸对小白菜生长及代谢产物的影响[D]. 上海: 上海交通大学, 2014.

13

高洪波 李敬蕊 章铁军 甘氨酸和谷氨酸与钼配施对生菜品质的影响西北植物学报2010305968973

高洪波, 李敬蕊, 章铁军, 等. 甘氨酸和谷氨酸与钼配施对生菜品质的影响[J]. 西北植物学报, 2010, 30(5): 968-973.

14

武隆楷 姜玥珊 冯倩 根施甘氨酸对日光温室秋冬茬黄瓜生长、产量及品质的影响中国蔬菜202256873

武隆楷, 姜玥珊, 冯倩, 等. 根施甘氨酸对日光温室秋冬茬黄瓜生长、产量及品质的影响[J]. 中国蔬菜, 2022(5): 68-73.

15

LIC Z YAOW J WANGJ P A novel effect of glycine on the growth and starch biosynthesis of storage root in sweetpotato (Ipomoea batatas Lam.)Plant Physiology and Biochemistry2019144395403

10.1016/j.plaphy.2019.10.012

LI C Z, YAO W J, WANG J P, et al. A novel effect of glycine on the growth and starch biosynthesis of storage root in sweetpotato (Ipomoea batatas Lam. )[J]. Plant Physiology and Biochemistry, 2019, 144: 395-403. doi:10.1016/j.plaphy.2019.10.012

16

孙琦. 低温胁迫下甘氨酸替代铵态氮对玉米幼苗物质代谢影响[D]. 哈尔滨: 东北农业大学, 2022.

17

李宜珅. 甘氨酸对不同胁迫条件下高山离子芥保护作用研究[D]. 兰州: 西北师范大学, 2016.

18

仇奕之 李宜珅 杨鹏军 甘氨酸对不同胁迫条件下高山离子芥试管苗的保护作用兰州大学学报(自然科学版)2018542200207

仇奕之, 李宜珅, 杨鹏军, 等. 甘氨酸对不同胁迫条件下高山离子芥试管苗的保护作用[J]. 兰州大学学报(自然科学版), 2018, 54(2): 200-207.

19

CAOX C ZHONGC ZHUL F Glycine increases cold tolerance in rice via the regulation of N uptake, physiological characteristics, and photosynthesisPlant Physiology and Biochemistry2017112251260

10.1016/j.plaphy.2017.01.008

CAO X C, ZHONG C, ZHU L F, et al. Glycine increases cold tolerance in rice via the regulation of N uptake, physiological characteristics, and photosynthesis[J]. Plant Physiology and Biochemistry, 2017, 112: 251-260. doi:10.1016/j.plaphy.2017.01.008

20

WANGW Y YINH X XUJ Effects of glycine pretreatment on the growth and oxidative damage in heat-stressed Festuca sinensis Keng seedlingsJournal of Lanzhou University (Natural Sciences)20124817578

WANG W Y, YIN H X, XU J, et al. Effects of glycine pretreatment on the growth and oxidative damage in heat-stressed Festuca sinensis Keng seedlings[J]. Journal of Lanzhou University (Natural Sciences), 2012, 48(1): 75-78.

21

邓皓予 吴一超 符腾 甘氨酸喷施下Cd对川麦28生理生化过程的影响华北农学报202439增刊16371

邓皓予, 吴一超, 符腾, 等. 甘氨酸喷施下Cd对川麦28生理生化过程的影响[J]. 华北农学报, 2024, 39(增刊1): 63-71.

22

赵丽. Gly/NO3-N对小白菜抗氧化性及多酚代谢的影响[D]. 上海: 上海交通大学, 2018.

23

YANGX CUIX X ZHAOL Exogenous glycine nitrogen enhances accumulation of glycosylated flavonoids and antioxidant activity in lettuce (Lactuca sativa L.)Frontiers in Plant Science201782098

10.3389/fpls.2017.02098

YANG X, CUI X X, ZHAO L, et al. Exogenous glycine nitrogen enhances accumulation of glycosylated flavonoids and antioxidant activity in lettuce (Lactuca sativa L.)[J]. Frontiers in Plant Science, 2017, 8: 2098. doi:10.3389/fpls.2017.02098

24

刘晓嵩. 硝态氮和甘氨酸态氮供应下菠菜氮素吸收与代谢差异研究[D]. 上海: 上海交通大学, 2016.

25

DUBEYA K KUMARN RANJANR Application of glycine reduces arsenic accumulation and toxicity in Oryza sativa L. by reducing the expression of silicon transporter genesEcotoxicology and Environmental Safety2018148410417

10.1016/j.ecoenv.2017.10.047

DUBEY A K, KUMAR N, RANJAN R, et al. Application of glycine reduces arsenic accumulation and toxicity in Oryza sativa L. by reducing the expression of silicon transporter genes[J]. Ecotoxicology and Environmental Safety, 2018, 148: 410-417. doi:10.1016/j.ecoenv.2017.10.047

26

王小丽. 小白菜对甘氨酸态氮的吸收代谢及生理响应[D]. 上海: 上海交通大学, 2014.

27

侯学文 李英杰 钟琪 光呼吸代谢途径及其调控的研究进展植物生理学报2019553255264

侯学文, 李英杰, 钟琪, 等. 光呼吸代谢途径及其调控的研究进展[J]. 植物生理学报, 2019, 55(3): 255-264.

28

MAQ X CAOX C WUL H Light intensity affects the uptake and metabolism of glycine by pakchoi (Brassica chinensis L.)Scientific Reports2016621200

10.1038/srep21200

MA Q X, CAO X C, WU L H, et al. Light intensity affects the uptake and metabolism of glycine by pakchoi (Brassica chinensis L.)[J]. Scientific Reports, 2016, 6: 21200. doi:10.1038/srep21200

29

HANR F KHALIDM JUANJ X Exogenous glycine inhibits root elongation and reduces nitrate-N uptake in pak choi (Brassica campestris ssp. Chinensis L.)Plos One2018139e0204488

10.1371/journal.pone.0204488

HAN R F, KHALID M, JUAN J X, et al. Exogenous glycine inhibits root elongation and reduces nitrate-N uptake in pak choi (Brassica campestris ssp. Chinensis L.)[J]. Plos One, 2018, 13(9): e0204488. doi:10.1371/journal.pone.0204488

30

WANGX L TANGD M HUANGD F Proteomic analysis of pakchoi leaves and roots under glycine nitrogen conditionsPlant Physiology and Biochemistry20147596104

10.1016/j.plaphy.2013.12.012

WANG X L, TANG D M, HUANG D F. Proteomic analysis of pakchoi leaves and roots under glycine nitrogen conditions[J]. Plant Physiology and Biochemistry, 2014, 75: 96-104. doi:10.1016/j.plaphy.2013.12.012

31

李艳艳. 尿素配施甘氨酸对桃树氮素吸收利用及果实品质的影响[D]. 泰安: 山东农业大学, 2021.

32

周斌雄 陈银华 曹鹏飞 不同浓度甘氨酸替代硝态氮对雾培叶用莴苣生长及品质的影响中国蔬菜20249112116

周斌雄, 陈银华, 曹鹏飞, 等. 不同浓度甘氨酸替代硝态氮对雾培叶用莴苣生长及品质的影响[J]. 中国蔬菜, 2024(9): 112-116.

33

THORNTONB Uptake of glycine by non-mycorrhizal Lolium perenneJournal of Experimental Botany20015235913151322

THORNTON B. Uptake of glycine by non-mycorrhizal Lolium perenne[J]. Journal of Experimental Botany, 2001, 52(359): 1315-1322.

34

HARTUNGW RATCLIFFER G Utilization of glycine and serine as nitrogen sources in the roots of Zea mays and Chamaegigas intrepidusJournal of Experimental Botany20025337923052314

10.1093/jxb/erf092

HARTUNG W, RATCLIFFE R G. Utilization of glycine and serine as nitrogen sources in the roots of Zea mays and Chamaegigas intrepidus[J]. Journal of Experimental Botany, 2002, 53(379): 2305-2314. doi:10.1093/jxb/erf092

35

GET SONGS ROBERTSP Amino acids as a nitrogen source for tomato seedlings: the use of dual-labeled (13C, 15N) glycine to test for direct uptake by tomato seedlingsEnvironmental and Experimental Botany2009663357361

10.1016/j.envexpbot.2009.05.004

GE T, SONG S, ROBERTS P, et al. Amino acids as a nitrogen source for tomato seedlings: the use of dual-labeled (13C, 15N) glycine to test for direct uptake by tomato seedlings[J]. Environmental and Experimental Botany, 2009, 66(3): 357-361. doi:10.1016/j.envexpbot.2009.05.004

36

SHOOSHTARIF Z SOURIM K HASANDOKHTM R Glycine mitigates fertilizer requirements of agricultural crops: case study with cucumber as a high fertilizer demanding cropChemical and Biological Technologies in Agriculture2020719

10.1186/s40538-020-00185-5

SHOOSHTARI F Z, SOURI M K, HASANDOKHT M R, et al. Glycine mitigates fertilizer requirements of agricultural crops: case study with cucumber as a high fertilizer demanding crop[J]. Chemical and Biological Technologies in Agriculture, 2020, 7: 19. doi:10.1186/s40538-020-00185-5

37

MOHAMMADIPOURN SOURIM K Beneficial effects of glycine on growth and leaf nutrient concentrations of coriander (Coriandrum sativum) plantsJournal of Plant Nutrition2019421416371644

10.1080/01904167.2019.1628985

MOHAMMADIPOUR N, SOURI M K. Beneficial effects of glycine on growth and leaf nutrient concentrations of coriander (Coriandrum sativum) plants[J]. Journal of Plant Nutrition, 2019, 42(14): 1637-1644. doi:10.1080/01904167.2019.1628985

38

ZHANGY L HES R ZHANGZ Glycine transformation induces repartition of cadmium and lead in soil constituentsEnvironmental Pollution2019251930937

10.1016/j.envpol.2019.04.099

ZHANG Y L, HE S R, ZHANG Z, et al. Glycine transformation induces repartition of cadmium and lead in soil constituents[J]. Environmental Pollution, 2019, 251: 930-937. doi:10.1016/j.envpol.2019.04.099

当前期刊数据统计
摘要浏览量: 0
PDF下载量: 0
被引用次数: 0
扫一扫关注
肥料与健康
微信公众号