Bio:
Email: 851431186@qq.com
杨紫绚(1996—),女,硕士研究生,主要从事农作物营养高效利用与品质改良技术研究;851431186@qq.com
近年来,甘氨酸在作物栽培中的生理调控作用备受关注。综述了甘氨酸在植物生长发育、抗逆性、营养代谢、抗氧化能力及氮素吸收利用等方面的调控机制,并探讨了其在绿色农业中的应用潜力。研究表明:甘氨酸通过促进根系发育、提高光合效率、激活抗氧化系统及优化氮代谢途径等方式,可以提升作物的产量与品质;具有缓解低温、干旱及重金属胁迫的作用,为逆境农业提供了新策略;可作为有机氮源直接被植物吸收,减少了对化肥的依赖,展现出环境友好的特性。今后开发含甘氨酸的复合肥或功能叶面肥,优化肥料的施用浓度及田间稳定性,并评估其在大规模农业生产中的经济性和环境效益,将有助于推动甘氨酸在绿色农业中的规模化应用。
In recent years, the physiological regulatory roles of glycine in crop cultivation have attracted significant attention. The regulatory mechanisms of glycine in plant growth and development, stress resistance, nutrient metabolism, antioxidant capacity, and nitrogen absorption and utilization are summarized, while exploring its potential applications in green agriculture. Research indicates that glycine enhances crop yield and quality by promoting root development, improving photosynthetic efficiency, activating the antioxidant system, and optimizing nitrogen metabolism pathways. It demonstrates efficacy in alleviating low temperature, drought, and heavy metal stress, offering new strategies for adversity agriculture. Furthermore, glycine can be directly absorbed by plants as an organic nitrogen source, reducing dependence on chemical fertilizers and exhibiting environmentally friendly characteristics. Future development of compound fertilizers or functional foliar fertilizers containing glycine, optimization of application concentration and field stability, and evaluation of its economic viability and environmental benefits in large-scale agricultural production will facilitate the widespread application of glycine in green agriculture.
YANG N, WANG C L, HE W P, et al. Photosynthetic characteristics and effects of exogenous glycine of Chorispora bungeana under drought stress[J]. Photosynthetica, 2016, 54(3): 459-467. doi:10.1007/s11099-016-0187-9
LI C Z, YAO W J, WANG J P, et al. A novel effect of glycine on the growth and starch biosynthesis of storage root in sweetpotato (Ipomoea batatas Lam. )[J]. Plant Physiology and Biochemistry, 2019, 144: 395-403. doi:10.1016/j.plaphy.2019.10.012
CAO X C, ZHONG C, ZHU L F, et al. Glycine increases cold tolerance in rice via the regulation of N uptake, physiological characteristics, and photosynthesis[J]. Plant Physiology and Biochemistry, 2017, 112: 251-260. doi:10.1016/j.plaphy.2017.01.008
WANG W Y, YIN H X, XU J, et al. Effects of glycine pretreatment on the growth and oxidative damage in heat-stressed Festuca sinensis Keng seedlings[J]. Journal of Lanzhou University (Natural Sciences), 2012, 48(1): 75-78.
YANG X, CUI X X, ZHAO L, et al. Exogenous glycine nitrogen enhances accumulation of glycosylated flavonoids and antioxidant activity in lettuce (Lactuca sativa L.)[J]. Frontiers in Plant Science, 2017, 8: 2098. doi:10.3389/fpls.2017.02098
DUBEY A K, KUMAR N, RANJAN R, et al. Application of glycine reduces arsenic accumulation and toxicity in Oryza sativa L. by reducing the expression of silicon transporter genes[J]. Ecotoxicology and Environmental Safety, 2018, 148: 410-417. doi:10.1016/j.ecoenv.2017.10.047
MA Q X, CAO X C, WU L H, et al. Light intensity affects the uptake and metabolism of glycine by pakchoi (Brassica chinensis L.)[J]. Scientific Reports, 2016, 6: 21200. doi:10.1038/srep21200
HAN R F, KHALID M, JUAN J X, et al. Exogenous glycine inhibits root elongation and reduces nitrate-N uptake in pak choi (Brassica campestris ssp. Chinensis L.)[J]. Plos One, 2018, 13(9): e0204488. doi:10.1371/journal.pone.0204488
WANG X L, TANG D M, HUANG D F. Proteomic analysis of pakchoi leaves and roots under glycine nitrogen conditions[J]. Plant Physiology and Biochemistry, 2014, 75: 96-104. doi:10.1016/j.plaphy.2013.12.012
THORNTON B. Uptake of glycine by non-mycorrhizal Lolium perenne[J]. Journal of Experimental Botany, 2001, 52(359): 1315-1322.
HARTUNG W, RATCLIFFE R G. Utilization of glycine and serine as nitrogen sources in the roots of Zea mays and Chamaegigas intrepidus[J]. Journal of Experimental Botany, 2002, 53(379): 2305-2314. doi:10.1093/jxb/erf092
GE T, SONG S, ROBERTS P, et al. Amino acids as a nitrogen source for tomato seedlings: the use of dual-labeled (13C, 15N) glycine to test for direct uptake by tomato seedlings[J]. Environmental and Experimental Botany, 2009, 66(3): 357-361. doi:10.1016/j.envexpbot.2009.05.004
SHOOSHTARI F Z, SOURI M K, HASANDOKHT M R, et al. Glycine mitigates fertilizer requirements of agricultural crops: case study with cucumber as a high fertilizer demanding crop[J]. Chemical and Biological Technologies in Agriculture, 2020, 7: 19. doi:10.1186/s40538-020-00185-5
MOHAMMADIPOUR N, SOURI M K. Beneficial effects of glycine on growth and leaf nutrient concentrations of coriander (Coriandrum sativum) plants[J]. Journal of Plant Nutrition, 2019, 42(14): 1637-1644. doi:10.1080/01904167.2019.1628985